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Supplementary Text for 
“Integrative Analysis of the Caenorhabditis 
elegans Genome by the modENCODE Project” 

 

A. Overview of the Supplement and Online 
Resources  
A.1. The Supplement  
In the supplement we provide more details on the data and analysis described in the main text. 
Below is an outline of the major sections of the document to give an overview of key 
components. Note that the supplement is laid out in a parallel fashion to the main text, as much 
as possible sharing common headings. Where an outline heading is exactly parallel, it is prefixed 
by "More Detail on" and then has its section name from the main text “quoted and underlined”.  

A. Overview of the Supplement and Online Resources  
A.1. The Supplement  
A.2. The Paper Site: modencode.org/publications/integrative_worm_2010  
A.3. modENCODE.org 
A.4. WormBase, SRA and Beyond 

B. Information on the Initial Data Preparation  
B.1. Information on Embryo Staging 
B.2. Minimizing Batch Effects in Sample Preparation 
B.3. Comparing and Scaling Array and Sequencing Data 

C. More Detail on “the Transcriptome”  
C.1. More Detail on “Protein-coding Genes” and “Gene Models” 
C.2. More Detail on “Expression Dynamics” I: Differential Expression 
C.3. More Detail on “Expression Dynamics” II: Global Analysis of the Dynamics of Transcription and Binding 
C.4. More Detail on “Alternative Splicing” 
C.5. More Detail on “Pseudogenes”  
C.6. More Detail on “ncRNAs”  

D. More Detail on “Regulatory Sites and Interactions” 
D.1. More Detail on “TF-Binding Sites, Motifs, and Targets” 
D.2. More Detail on “Clustered Binding in HOT Regions” 
D.3. More Detail on “Building a TF Hierarchy” 
D.4. More Detail on an “Integrated miRNA-TF Network and its Motifs” 

E. More Detail on “Chromatin Organization and its Implications” 
E.1. More Detail on “Models Relating Chromatin to TF Binding”  
E.2. More Detail on “Models Relating Chromatin to Gene Expression”  

F. More Detail on “Conservation Analysis” 
F.1. Multiple Alignments  
F.2. Evolutionary Constraint Calculations 
F.3. Coverage Analysis  

G. More Detail for the “Discussion”: Comparing Human and Worm Annotation 
G.1. Analysis of the Amount of Transcription and TF Binding 
G.2. Aggregation Analyses: RNA Pol II and Histone Modifications  
G.3. Conservation Analysis  

H. Author Roles 
I. Acknowledgements 
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A.2. The Paper Site: 
modencode.org/publications/integrative_worm_2010  
All modENCODE data and analyses are available online. To explore the underlying details of 
the datasets specifically presented in this paper further, we recommend as a first point of 
reference utilizing the paper web site at http://www.modencode.org/publications/integrative_worm_2010. 
The site serves as a central resource point for accessing all data associated with this paper. On 
this page, for all figures and tables presented (including those in the supplement), we have listed 
links to the underlying source data (for each of the experiments analyzed) and any intermediate 
analysis files that aggregate the source data in various ways or reference external data sources. 
We have also included links to many of the tools used in the analysis. Finally, we have stated the 
WormBase version(s) to which data has been mapped or compared for each section in Table S17. 
The list of experiment links has descriptive titles, making it easy to identify and access individual 
experiments analyzed using the modMine interface (1). 

A.3. modENCODE.org 

The modENCODE project website, www.modENCODE.org, is the primary entry point for 
accessing and downloading the entire modENCODE data corpus.  

Following the modMine link from the modencode.org provides a searchable interface and easy to 
explore organization of the datasets. For access to a graphical depiction of the datasets across the 
chromosomes, follow the “Browse worm Genomes” link to open a GBrowser window The 
GBrowser enables side by side visual comparison of datasets and provides options to customize, 
share and export regions of interest.  

A.4. WormBase, SRA and Beyond 

Finally, ModENCODE data and analyses are available through many international repositories in 
various forms. The primary site to access and download the six-way nematode alignment is the 
UCSC Genome Browser (2), and raw microarray and sequencing data are available from the 
GEO (3) and SRA (4) resources respectively. The accession numbers for GEO and SRA data sets 
can be found linked from the modMine dataset summaries, or the resources can be searched 
directly for the “modENCODE” project. Interpreted data, including corrected gene models, 
alternative transcripts, and ChIP peaks, are being incorporated into WormBase (5). Interested 
users can also apply for access to the Bionimbus private compute cloud, an experimental 
resource that holds a complete mirror of the modENCODE corpus and virtual machines that are 
pre-populated with a variety of tools for accessing and manipulating the data. 
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B. Information on the Initial Data Preparation  
B.1. Information on Embryo Staging 

Here we discuss how embryos were staged for these studies. A previous study hand-selected 
embryos and then performed two rounds of amplification in order to analyze gene expression 
profiles (6).  They were therefore able to precisely stage the embryos to a specific number of 
cells, and perform a high-resolution timecourse as embryos progressed from 1- to 2- to 4- to 8-
cell embryos. We required a much greater amount of starting material and chose not to use 
amplification, so we did not handpick our embryos but instead collected embryos directly from 
young adults by bleaching.  Embryos collected immediately for analysis (early stage, or EE 
embryos) consisted on average of 37% <28-cell embryos, 30% 28–100-cell embryos, and 33% 
~100–300-cell embryos.  Embryos were also allowed to progress through development for ~6 
hours (late stage, or LE embryos), and then were collected.  These late stage embryos consisted 
of a diverse mixture of embryos in the comma, one-fold, and two-fold stages. 

B.2. Minimizing Batch Effects in Sample Preparation 

Batch effects are an important source of error that can confound analysis of high-throughput 
functional genomics data (7). We have taken a number of steps to measure them and ameliorate 
their effect. 

We have tried where possible to centralize the sample preparation. All the samples for the tiling 
arrays were done in the same lab and these were the same as for the RNA-seq. In particular, the 
samples for the transcriptome analysis were generated in the labs of Reinke (whole animal) and 
Miller (tissue-specific). These two labs coordinated sample preparation as much as possible, 
given the different experimental constraints of their approaches. Animals were synchronized to a 
two-hour window in the early larval stage, and then growth was timed to each of the subsequent 
developmental stages.   

For the whole animal samples, RNA was collected using the Trizol method (8) and directly 
analyzed by tiling array or RNA-seq.  All tiling array hybridizations were performed by the same 
person at a core facility at Yale.  The RNA-seq samples for each stage were performed on the 
exact same RNA population used for the tiling array in most cases, with a few instances of 
having to re-isolate the RNA from a independently grown prep, which underwent exactly the 
same synchronization procedure and growth conditions. Correlation analysis between tiling array 
and RNA-seq for these independent samples indicates that they are nearly as closely related as 
when the same RNA sample is analyzed by both tiling array and RNA-seq. The Spearman 
correlation coefficients relating RNA-seq vs. tiling array data for late embryo (independent 
sample preparations) and L2 (same sample preparation) are 0.85 and 0.82, respectively.  
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For the tissue-specific samples (on which only tiling array analysis was performed), all samples 
were compared to an internally created control sample, which represents the whole animal at that 
particular stage. Given the specific experimental manipulation (FACS sorting or IP) required to 
generate the tissue-specific samples, it was more appropriate to use this internal control, which 
had undergone the same manipulations, rather than those generated in another lab. All tiling 
array hybridizations for tissue-specific samples and controls were performed in the Vanderbilt 
microarray core facility. Moreover, all of these samples were hybridized to arrays in triplicate, 
from three independently grown and isolated preps, demonstrating reproducibility. 

B.3. Comparing and Scaling Array and Sequencing Data 

B.3.a. ChIP-chip vs. ChIP-seq 

The modENCODE project began when tiling arrays (9) were still the platform of choice for 
genome-wide location analysis. Many genome-wide location data sets, especially on histone 
marks and chromatin factors, were obtained using ChIP-chip (10) on tiling arrays. To ensure the 
compatibility between ChIP-chip and ChIP-seq data generated by different modENCODE 
groups, we examined RNA Pol II ChIP data detected by both ChIP-chip (from the Lieb project) 
and ChIP-seq (from the Snyder project) (Fig. S1).  

At 1 kb resolution, the correlation between individual RNA Pol II profiles at a given stage is 
0.75-0.88 within ChIP-seq replicates and 0.77-0.91 within ChIP-chip replicates. The correlation 
scores between ChIP-seq and ChIP-chip replicates are 0.56-0.78. Although variations across 
platform/group are slightly higher than those within platform/group, data across different labs at 
the same stage are still more correlated than those across different stages by the same lab. 

Finally, while ChIP-seq yielded more peaks than did ChIP-chip, the top 3,000 peaks identified 
by ChIP-chip and ChIP-seq overlap by approximately 2/3, a level of agreement normally 
observed for ChIP data from different labs on the same platform. These observations not only 
indicate that the two platforms are comparable, but also attest to the high quality of the 
respective data sets. 

B.3.b. Expression Tiling Arrays vs. RNA-seq 

We also had an opportunity to compare tiling array and RNA-seq technologies for measurement 
of gene expression, as data sets were generated using both techniques on matched samples. As 
there were no biological replicates in the RNA-seq time course, we made use of the fact that for 
many RNA-seq experiments, the identical RNA source was profiled by tiling array. This allowed 
us to perform comparisons of the data generated by the two methods. A detailed comparison of 
these methods was described in (11); in addition to presenting some main points from this 
analysis here, we also repeat this analysis on data sets associated with this manuscript. From this 
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comparison, we were able to develop methods of optimally scaling the tiling array measurements 
to make them best correspond to those from RNA-seq. 

Signals from the two platforms agree well (Fig. S2). For a young adult sample, the Pearson 
correlation is 0.83 between RNA-seq measurements using polyA-selected RNA and tiling array 
measurements using total RNA. A higher correlation of 0.90 was found when polyA-enrichment 
was also used for the sample that had been hybridized on tiling arrays. Using the maxgap-minrun 
algorithm with optimized parameters, we then segmented the signals into transcriptionally active 
regions (12, 13). A ROC curve, parameterized by signal threshold, indicates that RNA-seq 
consistently outperforms tiling array in its ability to predict known transcribed regions. For 
instance, at a false positive rate (FPR) of 0.05, the tiling array yields a sensitivity of 0.68, while 
RNA-seq attains a sensitivity of 0.85. Correspondingly, we also found that the RNA-seq data 
predicted exon boundaries with greater accuracy, with a median offset of 0 bp (in comparison to 
7 bp for the tiling array data). This is to be expected, as the resolution of an array is limited by its 
probe size, which was 25 bp in this experiment. 

Fig. S2 shows several genes in the upper left, indicating they are measured as highly expressed 
by tiling array but not RNA-seq. We conducted a "nearest neighbor" analysis to investigate the 
hypothesis that this is due to cross-hybridization effects on the array. For each gene, we 
computed the expression level from probes lying within that gene, as well as probes similar in 
sequence, but elsewhere in the genome. For tiling arrays, we found these two values to be similar 
for many genes, indicating that the suggested expression could arise equally well from true 
expression or cross-hybridization. These values are similar for fewer genes when using RNA-seq 
data. Another analysis, using pseudogenes, also confirms cross-hybridization in arrays (11). We 
have used these analyses in formulating our fairly conservative criteria for transcribed 
pseudogenes (see main text and Fig. 1D). 
 

For determining gene expression values maximally compatible with RNA-seq, we used the 
following procedure: for 42 of the 46 experiments listed in Table S3 (without some of the 
infection samples), we obtained a signal track by applying pseudomedian smoothing over the 
three replicates, which provides an expression level for each probe. We then consider all probes 
overlapping the exonic regions of each transcript by at least 50%. We defined the expression 
level of this transcript as the median of the signal values for all such probes. Gene expression 
levels were then defined simply as equal to those of the longest isoform. For the inter-sample 
comparison, we normalized these expression levels by dividing the values by the slide median, 
i.e. the median of all probes on the array and obtained a large data matrix (42 samples x 20,085 
genes). Expression levels for each slide were next centered by subtracting the mean expression 
value for each slide from all expression values within the slide. 
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C. More Detail on “the Transcriptome”  

C.1. More Detail on “Protein-coding Genes”                      
and “Gene Models” 

C.1.a. RNA-seq Read Mapping and Methods for the Creation of Stage-
Specific RNA-seq-only Genelets 

Stage-specific genelets, based solely on stage-specific RNA-seq data were created using methods 
similar to those described (14), but with several additional refinements. Briefly, the Illumina 
reads were uniquely aligned against the genome, and an exhaustive coverage-based spliced 
leader and splice junction database were created for each stage (14). Thresholds for read 
coverage were set for a 0.05 false positive rate, based on a ROC analysis. Transcripts were 
created by seeding with the highest confidence splice sites and spliced leaders in a region, and 
then extending from those sites and leaders, incorporating coverage and junctions into the model 
(Fig. S5). The procedure was iterated until all confirmed splice junctions and leaders were 
incorporated into models. Instead of producing transcripts containing every possible combination 
of every splice junction/leader, each splice junction/leader was used in at least one model. We 
created alternative models, with merged neighboring exons, when above-threshold read coverage 
suggested the intron had been retained, and when frame was maintained across the merged 
region. We also generated genelets with alternative start/stop sites within introns when the entire 
intron was not retained, but when there were at least 50 bases of above-threshold coverage that 
extended into the intron initiated by a TSS or terminated by a polyA site. 

To generate the list of polyA addition sites for possible inclusion in our transcript sets, we first 
created a list of all possible blocks that could contain a polyA site by using a non-redundant list 
of exons from our integrated transcript set and identifying all blocks between the start of one 
exon and the start of the next upstream exon. For each of those blocks, we took 3P-Seq tags from 
(15)  (defined in our analysis as the tags with at least one 3´-terminal A, at least one of which 
was untemplated) and found the site with the highest number of tags in that interval and clustered 
the tags +/-10 bases from that site.  We then looked for the site with the next highest number of 
tags and clustered around that site, demanding that the cluster have at least five tags and have at 
least 1% of the tags in the first cluster. We continued in that manner to identify all candidate 
sites. For all sites in that block that had less than five tags or had <1% as many reads as the most 
supported candidate site, we labeled them as "secondary".  For blocks where there were no sites 
with >=5 tags, all sites within those blocks were labeled as "orphans". For secondary and orphan 
sites, we retained the site if a polyA site defined by another method (Mangone et al., 2010, RNA-
seq or WormBase) was present within a distance 10 nucleotides of the site. Some sites defined 
by our RNA-seq data, Mangone et al., or WormBase fell >10 nucleotides away from any 3P-Seq 
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tag; these also were retained as candidate polyA sites.  The final set of polyA sites (30,737) was 
then the subset of the candidate sites where, during transcript creation, above-threshold coverage 
extended to reach the site. For these 30,737 sites, we tallied those that had support from each 
data source, considering a query site supported if the source indicated that a site was present 
within 20 nucleotides of the query site (Table S2a).  

The stage-specific polyA addition sites (including those generated by this project, as well as 
those from (15)) were clustered (keeping only a single polyA addition site when there are 
multiple polyA sites within a 10 bp window). While all spliced leaders were incorporated into at 
least one prediction, polyA sites were only incorporated when a genelet model extended to the 
polyA site. Because overlapping UTRs can cause neighboring same strand predictions to merge 
if there is no spliced leader or no polyA site, whenever a single exon overlapped two separate 
neighboring WormBase gene predictions, we broke the corresponding transcript into two 
separate transcripts. We also broke transcripts whenever they overlapped more than one 
WormBase gene prediction, and three or more neighboring exons were not included in the CDS 
portion of the transcript. The CDS region was defined by identifying the longest open reading 
frame. Single exon transcripts from WormBase were incorporated if at least 75 bases had above-
threshold coverage. Additionally, single exon transcripts were created when a single block of 
coverage was at least 75 bases long and extended from an SL to a polyA site, or if it began with 
an SL and extended at least 250 bases (even if without a polyA site). 

C.1.b. Methods for the Aggregate Integrated Transcript Set  

To create the aggregate integrated transcript set, all of the reads (from all stages) were combined 
as if they were from a "single project". Splice junctions, spliced leaders, and polyA addition sites 
were identified as they would be in the stage-specific methods. Transcripts were then built in the 
way described above, seeding with splice junctions and extending using "experimentally 
confirmed" bases (see below). However, additional evidence from mRNAs/ESTs, WormBase, 
and modENCODE data were incorporated as described here. 

The following splice junctions were included in the aggregate integrated set: (1) splice junctions 
confirmed in the individual RNA-seq stages or by aggregate read coverage, (2) splice junctions 
confirmed by mRNA/EST in WormBase (WS209), RT-PCR/RACE, and mass spectrometry 
(16), and (3) WormBase-predicted splice junctions which were supported by RNA-seq data 
(including those after allowing an RNA-seq read to be placed in all positions at which it had an 
identical match). Note that, for the splice junction counts in Fig. 1A, we counted any splice 
junction beginning “before” the 5’ end of an existing WormBase (WS170) transcript prediction 
as 5’. Similarly, any splice junction extending “past” the 3’ end of an existing WormBase 
transcript prediction was annotated as 3’. Any splice junction internal to a WormBase transcript 
prediction was labeled as internal. 
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In the aggregate transcript set, a base was considered experimentally confirmed when any one of 
the following criteria were met: (a) above-threshold coverage in the individual stage or aggregate 
RNA-seq data set, (b) coverage by an mRNA/EST, RT-PCR/RACE, or alignment by mass 
spectrometry, (c) coverage by WormBase predictions, as long as the bounding splice junctions 
are confirmed splice junctions (i.e. holes in coverage within exons which already have evidence 
based on RT-PCR, RNA-seq, EST/mRNA, etc. can be "filled in" using WormBase coverage), or 
(d) coverage by a genelet created in the individual stage-specific sets. In addition to the 
“integrated transcript set,” we also created an “integrated genelet set” where evidence “(c)”, 
supplemented with WormBase predictions, is not included. 

For the aggregate set, spliced leader and polyA addition site data were included when (a) they 
were defined by coverage in individual stages (novel spliced leaders or polyA sites defined by 
the RNA-seq-only analyses were required to appear in more than one of the individual stages to 
be included) and/or in the aggregate set, (b) they were identified by WormBase (WS209) as SLs 
or polyAs, (c) they were identified in other studies generated from deep 3' RACE sequencing 
(15, 17), or (d) spliced leaders were identified by RT-PCR/RACE experiments. 

Transcripts are named after the overlapping WormBase transcript. For instance, the alternative 
transcripts/isoforms associated with WormBase C10H11.1 would have names such as 
C10H11.1.T1, C10H11.1.T2, C10H11.1.T3, etc. Those transcripts which do not overlap a 
WormBase transcript have names beginning with "RIT*" (for RNA-seq Integrated Transcript). 
The number following "RIT" is the chromosome (1=I, 2=II, etc. 6=X). The number after the first 
period is a unique number assigned to that transcript. The T1, T2, etc. are used for the alternative 
versions of that transcript. Currently, the naming does not allow one to know which transcript 
versions have the same CDS. 

For the aggregate transcript set described here, we included all of the 19 stages for which RNA-
seq data was available (Fig. S3). 

C.1.c. RNA-seq Saturation Analysis 

In order to understand the relationship between the robustness of gene expression measurements 
and the depth of sequencing, we devised the following in silico experiments: 

1. We considered an RNA-seq experiment with ~36M mapped reads (mid-L2 25dC 14 hours 
post L1 - DCCid=2351); 
2. We randomly selected fractions of the mapped reads: 1%, 5%, 10%, …, 90%, such that we 
generated subsets of ~300K, 1.6M, 3.3M, …, 30M mapped reads; 
3. We computed the expression levels for all 20,051 genes in WormBase190 as reads per 
kilobase of exonic region per million mapped reads (RPKM), using RSEQTools (18). As a gene 
model, we used the “composite”, i.e. the union of exonic nucleotides of all isoforms of a gene. 
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Fig. S4A reports the density plots at the different sequencing depths. As expected, the low-
coverage case shows a higher fraction of non-expressed genes. Interestingly, genes which have a 
log2(RPKM+1) greater than 2 seem to be less affected by sequencing depth. Fig. S4B reports the 
comparison between the density plots at different levels of coverage, suggesting that, with a 
sequencing depth of ~13M mapped reads, most of the expressed genes are captured. This 
hypothesis is also supported by Fig. S4C, which reports the number of non-expressed genes 
(RPKM=0) as a function of sequencing depth. Indeed, after ~13M mapped reads the number of 
“genes” with zero expression begins to plateau, although there remain small numbers of lowly-
expressed transcripts that can only be identified by further increases in depth. 

C.2. More Detail on “Expression Dynamics” I:  
Differential Expression 

C.2.a. Determining Over-represented Transcripts at Particular Stages 

We identified a set of transcripts that are over-expressed in each of the seven main 
developmental stages (EE, LE, L1, L2, L3, L4, and YA) relative to other stages (Fig. S12). The 
stage specific transcripts were defined as those highly expressed in a particular stage (>90%) but 
lowly expressed in at least 4 other stages (<70%). Promoter sequences (-1kb to 0 upstream of 
TSS) for each group were retrieved and searched for enriched motifs using the MEME algorithm 
(19, 20). To remove generic motifs that are present in promoters of all transcripts, we scanned 
and compared the occurrences of these candidate motifs in specific transcripts of all the 7 stages. 
As an example, MEME identified 24 candidate motifs that were enriched in EE-specific 
transcripts, 12 of which were over-represented in the promoters of EE- or LE-specific transcripts 
but not in other stage-specific transcripts or ubiquitous transcripts (Fig. S12). 

Transcripts for more than 95% of genes were detected in more than one stage in the RNA-seq 
timecourse, and almost half the transcripts were detected in every stage (Fig. S11). In contrast, 
only a small number of genes (~100/stage) showed strong stage-specific expression (Fig. S12), 
suggesting that differences between stages are due to modulation in expression levels of many 
genes rather than the presence of discrete stage-specific genes.  

C.2.b. Detection of Differential Expression from Tiling Arrays 

This section describes tiling array processing related to detection of differentially expressed 
genes. More details are in a companion paper (21). 

RNA was isolated from 25 different embryonic and larval cell types and from all cells derived 
from 5 selected developmental stages to generate a total of 30 tiling array data sets (22-24). 
Additionally, 7 tiling array data sets were generated from RNA extracted from synchronized 
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populations of whole animals at 7 different developmental stages. The C. elegans Affymetrix 
1.0R tiling array was used for all experiments. Non-redundant Transcriptionally Active Regions 
(nrTARs) were determined by a machine learning approach (25, 26)(Note that nrTARs were 
defined slightly differently than conventional TARs). nrTARs with > 20 nt overlap with 
WormBase coding exons or exons of integrated transcript models were counted as hits. For 
quantification of transcript levels for annotated genes, unique tiling array PM probes wholly 
contained within exons of gene models were selected to generate a probe set for each gene listed 
in WormBase version WS199 (obtained from ftp://ftp.wormbase.org as a gff3 format file). Tiling 
array data sets were quantile normalized and probe sets were median polished using RMA (27-29
). Significantly expressed (< 5% FDR) gene models were determined by comparison to an 
empirical null model of background expression from intergenic probes for each microarray data 
set (30). The total number of detected genes was calculated from the union of tiling array data 
sets for cells (30 data sets) stages (7 data sets) and for the combination of cells and stages (37 
data sets). As a conservative measure to correct for the accumulation of potential type 1 (false 
positive) errors, we adjusted the q-value of each detected gene by dividing by the cumulative 
number of independent samples used for each of these estimates (i.e., 37 for cells and stages, 30 
for cells, and 7 for stages). This adjustment applied a similar reasoning as Bonferroni correction 
of p-values by assuming that in the least favorable case, false positives, but not true positives, 
were independent (31). To define genes differentially expressed in cells, tiling array results 
obtained from specific cell types were compared to corresponding developmentally matched 
reference data sets obtained from all cells. Similarly, to define genes differentially expressed by 
stage, the 7 tiling array data sets obtained from staged whole animals were compared to each 
other. Differentially expressed gene models were estimated with a linear model and moderated t-
statistic (32, 33).  Gene models with a FDR < 0.05 and fold change > 2 were called significant. 
Differentially expressed genes detected in cells and/or stages were tabulated from the union of 
the corresponding comparisons. The estimates were adjusted with a Bonferroni-type correction 
in which the FDR threshold was divided by the number of comparisons between samples. For 
differentially expressed genes detected in the 25 cell types, the FDR was corrected by the total 
number of independent comparisons (total of 25). For stages, the FDR threshold was corrected 
by the total number of pairwise comparisons between data sets derived from seven stages (total 
of 21) (see Table S4 footnotes 4, 5 and 6, 7). The fraction of genes differentially expressed was 
determined by dividing the number of differentially expressed genes for each category by the 
number of genes detected as expressed in the same category (e.g., 11,229 genes differentially 
expressed in cells and stages divided by 14,279 genes expressed in cells and stages = 79%). 

C.3. More Detail on “Expression Dynamics” II: Global 
Analysis of the Dynamics of Transcription and Binding 

C.3.a. Determining a Non-Redundant List of Transcripts and Directly 
Analyzing their Expression and Binding 
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In this section we describe how we derived a high-quality list of non-redundant TSSs for 
studying expression and binding dynamics in Fig. 2A and 2B. This restrictive list has no 
transcripts that overlap and for each transcript the closest TSS is farther than 0.5 kb away. To 
derive the list we started with a list of transcripts obtained from WormBase. For each set of 
potentially overlapping transcripts at a given locus, we kept the longest one and discarded the 
rest. Then for each kept transcript, we defined a promoter region as a 1 kb window centered on 
the TSS. In some cases, promoter regions selected in this manner will overlap with other 
regulatory regions or transcripts, and cause RNA Pol II signal from potentially unrelated 
promoter regions to enter the window. To minimize this side effect and to reduce double-
counting of signal, we found all TSSs less than 500 bp (i.e. half the window size) apart and 
picked one from each set. Using this approach, we obtained a final set of 8,428 TSSs (and 
associated transcripts) used for our analyses. RNA Pol II binding levels were obtained by 
aggregating ChIP-seq signal over promoters.  Expression levels were derived from RNA-seq 
experiments.  

Additionally, to further examine our hypothesis that transcripts in early embryo may be inherited 
from the parent, we compared expression levels from RNA-seq data to RNA Pol II binding sites 
identified by ChIP-seq in early embryo. We identified 407 transcripts with a DCPM (depth of 
coverage per million mapped reads, a measure of expression) cutoff of 2.0, 180 of which also 
had a Pol II ChIP-seq peak corresponding to the promoter region (44%). Thus, 56% of these 
highly expressed transcripts do not have a corresponding RNA Pol II peak in the promoter 
region.  This finding lends support to our hypothesis that some transcripts are inherited from the 
parent and may also explain the correlation we see between expression in earlier stages and 
binding in later stages. RNA Pol II may be binding to these promoter regions in later stages as 
the organism manufactures more of its own transcripts and shifts from using those inherited from 
the parent. 

C.3.b. Using PCA for Analyzing Expression Changes across Tissues 

This section describes how we performed the principal components analysis (PCA) on the tissue 
samples in Fig. 2C. Our goal was to analyze the overall variation in the RNA-seq and tiling 
arrays samples in a consistent fashion and then show how the tiling arrays of specific matched 
embryo-larval pairs show a similar pattern. The embryonic cells were isolated by Fluorescence-
Activated Cell Sorting (FACS) of fluorescently tagged cells that had been extracted from 
dissociated embryos and cultured for 24 hours to allow further differentiation (21). The matched 
tissues from the L2 stage were isolated by precipitation of PolyA Binding Protein. 

First, we used gene-expression values for each of the tiling array samples determined in a way as 
to maximize compatibility with the RNA-seq DCPM values (see description above in 
supplement sect. B.3.b) and generated two PCAs: a larger one on all the tiling arrays samples as 
a whole and a smaller one using just a set of matched tissue samples. The larger PCA is 



 -12- 

described below in the batch effects section and has the advantage that its axes are most 
compatible with those for RNA-seq. 

The smaller PCA in Fig. 2C was produced using 6 pairs of matched tissue samples from mixed 
embryo (MxE) and L2, giving rise to a 12 sample x 20,085 gene data matrix on which principal 
components analysis was performed. A 12x12 matrix of principal components was obtained and 
the matched tissues plotted along the first two principal components, which comprised 67% of 
the total variation (50% + 17%). In this plot, the MxE and L2 stages are largely separated from 
each other along one axis while tissue types within a stage are arranged along the other 
component shown. For both principal components, transcripts contributing most heavily were 
associated with the GO categories “larval development,” “nematode larval development,” and 
“post-embryonic development” (Benjamini-Hochberg corrected p-values ranging from 6.9x10-61 
to 2.4x10-70; hypergeometric test). MxE and L2 cell type samples were largely separated along 
one of the axes, consistent with the idea that differences in gene-expression programs at the 
different developmental phases occur across tissues. The observed separation potentially could 
also reflect differences in sample preparation but we show in sect. C.3.c below, that this 
possibility can be largely discounted.  

C.3.c. Analysis of Potential Batch Effects using Tissue PCA 

To examine the possibility of batch effects in the tiling array dataset we repeated the principal 
components analysis using 42 different samples from the tiling array data set. Different tissues as 
well as whole animal experiments are included in this larger dataset. This approach gave rise to a 
large 42 sample x 20,085 gene data matrix. We then applied PCA to this matrix to reduce 
dimensionality and to identify axes of variance, generating a 42x42 matrix of principal 
components. The main component of this PCA was particularly enriched for genes with 
associated GO terms "nematode larval development,” “larval development,” and “post-
embryonic development and growth." (Benjamini-Hochberg corrected p-values ranging from 
1.5e-113 to 8.3e-113). The variance of the second principal component is primarily explained by 
a single gonad sample and hence we are not including this component in our batch effect 
analysis. Additionally, we compared the overall PCA of all the tiling array experiments to that of 
the RNA-seq experiments (obtained from the correlation matrix in Fig. 2A). Both PCAs shared 
similar top components. 

We examined the PCA of the 42 different samples for possible batch effects using a combination 
of the Student’s t-test, Pearson correlation, and Spearman rank correlation. Specifically, we 
examined the effects of lab (Fig. S13), the dates of first and last hybridization, polyA enrichment 
and the stage. Since two labs generated tiling microarray data, to examine possible lab effects we 
identified the component value associated with each sample along the first principal component.  
For the first principal component, these values were used to create two distributions (one per lab) 
and the means of these distributions were compared using the Student’s t-test.  The p-value 



 -13- 

obtained from this test was p=.07, indicating that variance due to lab is not a significant source of 
variance along this component. The above process and test was repeated for polyA enrichment 
(necessarily larval tissue samples) compared to the total RNA preparations and produced a p-
value of p=.0007, indicating polyA enrichment does play a role in the variance described by the 
first principal component. 

For comparisons involving more than two states such as date of first hybridization, date of last 
hybridization, and stage, both Pearson and Spearman correlations were run to determine whether 
their effects on the first principal component was significant. In the case of comparisons 
involving dates, samples were binned by quarter and year.  For stages, samples were binned as 
belonging to embryo, larval, or other. Overall, at the level on the variance described by the first 
principal component, batch effects related to date of first hybridization, date of last hybridization, 
and lab were not significant at the .05 level. Thus, for the characteristics tested our batch effect 
analysis revealed significant effects for only stage and polyA enrichment at the .05 level. 

The polyA enrichment effect is potentially an issue in relation to the small-PCA analysis in Fig. 
2C. That is, in this figure the MxE RNA samples were isolated from sorted cultured embryo cells 
and the L2 RNA samples isolated by immunoprecipitation of tissue specifically expressed polyA 
binding protein from whole animal extracts.  

To test whether this was significant we plotted the projection of each of the matched tissues from 
Fig. 2C onto the first principal component of the 42-sample tissue PCA (not the first component 
shown in Fig. 2C).  We find that projections for the MxE tissues range from -0.0092 for GABA 
neurons to 0.0898 for pan-neural while the projections for L2 range from -0.1958 for GABA 
neurons to -0.0495 for body-wall muscle. The one exception is L2 pan-neural which has a 
projection of 0.1018. Since we are now referring to the samples in the 42-sample tissue PCA, we 
can add the reference datasets into the analysis: the projections of the whole-animal references 
prepared without any polyA-enrichment are -0.027 for MxE and -0.1564 for L2. On the first 
component, which represents most of the variation in the data, the L2 tissues clearly segregate 
with the L2 reference, even though the latter did not have the polyA-enrichment and all are 
separate from the MxE tissues and reference (the one exception, of course, being the L2 pan-
neural sample). One gets a similar clustering when looking at projections on additional 
components, though the first-component projection provides the simplest and most concise 
summary. 

C.4. More Detail on “Alternative Splicing” 
We developed a number of approaches to analyze alternative splicing. A first approach looks at 
differential splice junction usage. Next, we have two alternative methods to resolve the 
expression level of individual isoforms for the same gene by distributing RNA-seq reads among 
a set of alternative transcripts in a probabilistic manner. One method uses expectation-
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maximization (EM), and the other, a Bayesian approach with Gibbs sampling. We compared 
relative and absolute expression of alternative transcripts, as identified by either method, 
between paired samples and across the entire time course of development.  

C.4.a. Differential Splice Junction Usage 

We created a non-redundant set of all splice junctions, noting the number of reads which 
confirmed that intron in each stage. We converted that number into reads per million (RPM) by 
multiplying 1,000,000, and dividing by the number of aligned reads in that stage. We further 
tracked the depth of coverage per million reads (DCPM) of a transcript that contained that splice 
junction. To identify alternative isoforms, we sorted the splice junctions by strand and by intron 
start position (donor), looked at the coordinates of one intron, and asked if the next intron in the 
list had a start which was equal to the preceding one (same donor, different acceptor), or if it 
came after the previous but before the next acceptor, etc. For the splice junctions with alternative 
forms, we looked at how the ratio of the RPM of the two (or more) forms varies over the stages. 
In this way the control was internal, the path through the region must use one of the splice 
junctions, and a change in the ratio means differential splice junction usage. To identify 
examples we performed pairwise comparisons by stage (e.g. comparing the early embryo to the 
young adult) looking for intron pairs where the transcripts involved both had a DCPM of at least 
one, where one splice junction in the pair was used at least 5 times more frequently in one stage 
and less frequently in the other stage, and where at least one splice junction in each pair had an 
RPM of at least 2 (corresponding to ~5 or more reads for the stages with 25M reads aligned). 
After identifying candidates in this way, we viewed the change in splice junction usage across 
stages using a normalized read count for each intron in each stage, calculated by dividing the 
RPM for that intron by the DCPM of a transcript containing that intron. 

C.4.b. IQSeq Analysis 
The first method, which we call "IQSeq", uses an expectation-maximization (EM) algorithm to 
resolve the maximum likelihood (MLE) expression level of individual isoforms. An 
implementation of this method can be found online (34). 

C.4.b.i. IQSeq Formalism 

IQSeq models RNA-seq as a partial sampling process. Let I  = {I1, ..., IK} be all the possible 
isoforms for a given gene, with relative abundances ! = (!1, ..., !K)T , where . We 
assume that there are M different partial sampling methods (sequencing techniques with 
difference characteristics, e.g. long/medium/short, single/paired end): Samp1, ..., SampM, and let 
S denote all the samples (reads): S = {s from Sampm|m =1, ..., M}. We also define  as 
Ind(partial sample (read) s is compatible with Ik), where Ind is the indicator function. There are 
in total N =  samples, where Nm is the total number of partial samples from Sampm. 
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Here we assume a two-step sampling process: First, a sampling method Sampm chooses an 
isoform instance Ik according to !. Second, the sampling method generates a partial sample s 
according to a local partial sample generation model (the read generation function)  

. 

Given I and S, IQSeq then estimate ! such that 

. 

We derive 

 . 

This problem can then be solved using EM algorithm by introducing a hidden variable 

. 

We denote the estimation for ! in the nth step as !(n), and further define 

, 

which is the expectation of Zs,k given !(n) and the reads S.  

We have  

 . 

By performing an E step that computes  

 , 

and an M step that maximizes with constraint . We have 

. 

C.4.b.ii. Detection of Differential Expression During Development with IQSeq 

We applied IQSeq to RNA-seq data of 7 developmental stages (EE, LE, L1, L2, L3, L4, YA) and 
derived both the relative and absolute RPKMs for all transcripts. Isoform composition for gene i 
in stage S is represented by a vector !(i,S,k) where the kth component is the relative abundance of 
isoform k in relation to the other isoforms. Between two stages R and S for a given gene I, the 
difference in abundance vectors gives a measure of the change in isoform usage for a gene. This 
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is represented as D(i,R,S)  = "/k  ((!(i,R,k) -!(i,S,k))2)/k. The difference D is a fractional number 
between 0 and 1; scores close to 1 indicate dramatic differences in the relative composition of 
different isoforms of the gene. The histogram in Fig. 1B and Fig. S14 plots the distribution of D 
values for all genes i. Overall, the histogram shows that most genes have minor differences in 
their isoforms, but a small fraction (280 genes out of 12,875 per pairwise comparison, and 1,324 
genes show at least a switch in all 21 comparisons) have major and minor isoform switching 
between stages (major and minor isoform showing at least 5.7 fold difference in expression 
abundance). We computed similar quantities for absolute differences. Genes are then classified 
based on their scores in these two statistics in pairwise comparisons, revealing the subsets which 
show only dramatic isoform composition change, only dramatic absolute expression level 
change, neither, or both. Further analysis on these subsets may reveal key gene players or 
pathways in dictating nematode development.  

C.4.c. Deepseq9 Analysis 

The second method, which we call "deepseq9", uses a Bayesian approach to estimate the relative 
expression of alternative transcripts for the same gene. An implementation of the algorithm, 
including documented source code, is available at SourceForge (35). Deepseq9 was developed 
by B. Carpenter (Statistics Dept., Columbia University) and M. Morris (CGSB, NYU).  

C.4.c.i. Computing Transcript-level Expression using a Joint Model of Read 
Alignment and Expression  

Given a data set of sequence reads, our goal is to estimate the expression of each alternative 
transcript for a gene based on the abundance of reads which map to sequences contained within 
each isoform. The method effectively distributes all of the observed reads among the possible 
isoforms using a probabilistic logic. Briefly, expression is inferred from the following data: 

K N+ (the number of variant isoforms), N N+ (the number of reads), and y1,...,yN (the 
reads).We assume two model hyperparameters: # (the expected variation from the reference 
sequence), and $1,...,$K R+ (the prior read count per sequence plus one (to avoid zero division 
errors)). The general-purpose parameter vector # reflects deviation of the sample sequence from 
the reference sequence for the given read distribution due to factors such as SNPs, amplification 
errors during sample preparation, and the sequencing platform's error profile. We infer two 
model parameters: t1,...,tN 1:K (the mapping of read to splice variant), and %1,..., %K  [0,1] 

such that  . (Note, % in Deepseq9 and IQSeq are equivalently defined.) 

! % ~ Dirichlet($) 
! tn ~ Discrete(%) for n 1:N  
! yn ~ Channel(tn,#) for n 1:N 
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To estimate expression levels, we must calculate the posterior probability of reads mapping to all 
possible alternative transcripts. The model uses Gibbs sampling to draw samples from the full 
posterior distribution p(%,t|y,$, #) computed over read mappings tn  and read expression levels % 
given the reads y, resulting in a discrete sampling of the mappings tn onto all annotated isoform 
variants based on the parameter % (effectively a beta-binomial model of expression level). The 
read channel model assigns the probability of a given read yn being observed, given that it arose 
from the splice variant tn under the model parameterized by #.  

C.4.c.ii. Alternative Splicing in the Aggregate Integrated Transcript Set 

The analysis was initiated using pre-computed exon-level coverage for the annotated aggregate 
integrated transcript models, expressed in DCPM, and a count of mappable reads for each exon 
(DCPM_bases), as determined from initial mapping of the RNA-seq data to the C. elegans 
genome (WS190) as described above (see sections above C.1.a and C.1.b). For each exon, we 
generated a set of putative alignments to all parent transcripts, and then used our Bayesian model 
to jointly compute the read assignment and transcript-level expression. The alignment score is 
the probability of the read given the exon, which is proportional to the exon length (counting 
only mappable bases): P(read|exon) = log2(ExonLength/TranscriptLength). We multiplied 
DCPM by 1000 to obtain pseudo-reads that align to the exon and then generated mappings 
between each pseudo-read and each possible parent transcript. The average number of mappings 
to distinct transcripts per read was 3.1 (i.e., on average, reads for each exon could map to one or 
more of three alternative transcripts). For the deepseq9 expression program, the Gibbs sampler 
was run for 1000 epochs, with a burn-in parameter of 500 (i.e., the first 500 iterations were 
discarded to allow the model to reach a stationary distribution); thereafter, we took one sample 
every 10 epochs (thinning of samples in this way reduces the effect of auto-correlation on 
samples and produces better variance estimates with fewer samples). Expression was computed 
as the average number of reads per transcript across all the samples. We compared our estimates 
with extrapolated transcript DCPM counts from the initial mapping described above, and found 
good overall correlation between the two approaches (median R2=0.82 across the 15 samples). 

C.4.c.iii. Clustering Expression by Developmental Stage using Self-Organizing 
Maps (SOMs) 

We combined the transcript-level expression calculated by deepseq9 for all aggregate integrated 
transcripts across the 15 stages into a single data table. To identify alternative transcripts which 
show a relative change in expression (i.e., transcript A > transcript B in stage 1; transcript A < 
transcript B in stage 2), we applied filtering criteria requiring that: (a) transcripts differ by at 
least 30% in opposite directions in at least two stages, and (b) the more highly expressed 
transcript has at least 5 pseudo-reads (corresponding to a DCPM of 0.005). (We note that ~800 
transcript pairs which passed these filters displayed borderline expression levels due to the low 
minimum read threshold, thus resulting in lower confidence estimates of differential expression.) 
The set of transcripts that passed these filters (15,064 transcripts for 3,428 genes) was run 
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through an SOM clustering algorithm (R 2.11 - library(class), function "SOM") that generated 48 
clusters (Fig. S15). 

C.4.c.iv. Identification of Alternative Transcripts with Different Developmental 
Profiles 

We found that 43% of all genes subjected to clustering showed alternative overlapping 
transcripts which fell into two or more different SOM clusters (corresponding to 7,203 
transcripts for 1,475 genes) (Fig. S16). From a total of 4,846 pairs of clusters containing 
alternative overlapping transcripts for the same gene, we further examined 2,788 cases 
(involving 5,443 transcripts for 1,320 genes) in which precisely one isoform fell into a distinct 
cluster from other isoforms for the same gene. Among these we were able to discern several 
distinct classes of alterations in features at the 5' end, within the CDS, or at the 3' end of 
transcripts (Fig. S17 and (36)). 

Individual examples from these different classes are shown in Fig. S18. We observed that while 
most cluster pairs shared fewer than 4 genes, those pairs with the largest number (proportion) of 
genes in common also tended to show similar developmental profiles. Thus, for follow-up of 
individual genes, examples from cluster pairs with fewer genes in common are more likely to 
reveal alternative transcripts with more obviously divergent developmental expression profiles. 

C.4.d. Validation of Inferred Transcript Expression from Deepseq9 and 
SOMs  

We used two methods to empirically test support for the differential expression of alternative 
transcripts during development inferred by deepseq9 and SOM clustering: (1) validation using 
qRT-PCR on specific examples presented in Fig. S18, and (2) comparison of the DCPM values 
from staged RNA-seq data estimated by deepseq9 using exonic reads (upon which we based our 
clustering) with counts from the same datasets of reads that span exon junctions, for the set of 
isoforms represented in Fig. S17. 

C.4.d.i. Overview of Validation using qRT-PCR 

Isoform-specific qRT-PCR was conducted using staged C. elegans RNA samples for two genes, 
F26B1.2 and C25H3.7 (Fig. S18).  These were selected for validation tests based on their 
distinctive cluster patterns, the presence of diagnostic splice variants, and high expression counts 
(the third example from Fig. S18 was not tested due to its lack of diagnostic splice junctions).  
Primers were designed to amplify specific isoforms or isoform groups for each gene (illustrated 
in Fig. S18): F26B1.2 transcripts 8 vs. 9 (F26B1.2-T8 vs. F26B1.2-T9); and C25H3.7 transcript 
3 (C25H3.7-T3) vs. the transcript group 1/2/4 (C25H3.7-T1, C25H3.7-T2, C25H3.7-T4). 
Transcript expression levels were calculated in terms of the fold-change formula FC = 2-&Ct using 
act-1 as an endogenous control (37), which is sensitive to fold-changes of 2 or greater. 
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To compare the two methods, we evaluated whether the direction of change in relative 
expression levels measured by qRT-PCR matched that estimated by deepseq9 using RNA-seq 
DCPM counts. In both cases, we obtained consistent results. For F26B1.2, qRT-PCR showed 
that T8 is expressed 25-fold higher and 2-fold higher than T9 in L2 and L4, respectively; thus, 
the difference in expression between T8 and T9 decreases from L2 to L4 according to both 
methods. Similarly, for C25H3.7, T1/T2/T4 is expressed 35.5-fold higher and 191-fold higher 
than T3 in Embryo and Young Adult, respectively; thus, the fold difference in expression 
between T1/T2/T4 and T3 is greater in Young Adult than in Embryo according to both methods.  
Overall, the qRT-PCR data for genes F26B1.2 and C25H3.7 show consistent trends that 
qualitatively support changes in relative isoform expression estimated from the RNA-seq data 
using deepseq9. 

C.4.d.ii. Materials and Methods for Validation using qRT-PCR 

To collect staged samples, N2 worms were bleached in 20% alkaline hypochlorite solution for 
three minutes and washed four times with M9. Embryos were either collected immediately for 
RNA extraction or rotated in M9 overnight to hatch and arrest at the L1 stage. L1s were either 
collected immediately for RNA extraction or plated on OP50-1 seeded 150cm NGM plates to a 
capacity of 20,000 worms per plate in order to develop to the various larval stages.  Plates were 
incubated for 22 hours at 15°C, 20°C, and 25°C to collect L2, L3 and L4 worms, respectively. 
For the young adult stage, plates were continually kept at 20°C for two days after plating L1 
worms. Each stage following L1 was characterized by size and morphological markers. 

RNA from the various stages was extracted using the RNAeasy Kit (Qiagen).  cDNA was 
prepared using SuperScriptIII Reverse Transcriptase (Invitrogen) and a poly(dT) primer. For 
gene expression analysis one microliter of cDNA was used in a SYBR Green qRT-PCR reaction 
(LightCycler FastStart DNA MasterPlus SYBR Green Kit, Roche).  qPCR was performed on a 
LightCycler 480 (Roche) with primer annealing at 58°C and florescence capture after extension.  
Crossing-threshold (Ct) values were calculated using the LightCycler 480 Sofware (Roche). 

Isoform-specific PCR primers with the following sequences were designed to produce products 
that span diagnostic introns that are not shared between the relevant pairs of isoforms, as shown 
in Fig. S18:   

C25H3.7.T3-F: 5’-TCGGTTTCTGGATCGAAGAT-3’; C25H3.7.T3-R: 5’- 
TCCTTTGGCAAGGTAGTTGG-3’; C25H3.7.T124-F 5’-CGTCAATCTCCACGAGGACT-3’; 
C25H3.7.T124-R 5’-GCATTGTTCACAGTTTTGTCG-3’; F26B1.2.T8-F 5’-
CGAGAGCACGATAATGACGA-3’; F26B1.2.T8-R 5’-
TTTTTTTTTTTTGAGAACAGTCTTCTC-3’;F26B1.2.T9-F 5’- 
CAAAGTGGGAGCCGCTATTA-3’; F26B1.2.T9-R 5’- AGCATGCGCACTTCACAC-3’;. 

Primer sequences for the act-1 control were:  



 -20- 

act-1-F 5’-GCTGGACGTGATCTTACTGATTACC-3’;act-1-R 5’- 
GTAGCAGAGCTTCTCCTTGATGTC-3’. 

C.4.d.iii. Validation using Reads Spanning Exon Junctions 

The estimated transcript-level DCPM values from deepseq9, upon which we based our clustering 
(Fig. S15, S16), were computed using only those reads that map fully within a single exon.  
Therefore, comparisons of exon junction-spanning reads from staged RNA-seq data with the 
deepseq9 DCPM values provide independent evaluation of the results from deepseq9.  We 
selected all introns that differ between pairs of isoforms based on their presence or absence in 
each model, and selected the reads spanning the flanking exons, which we call “discriminative 
reads”.  For each transcript, we then compiled a developmental expression profile based solely 
on the total counts of the discriminative reads for each stage. 

As a result of the clustering described above, we identified 2,788 cases involving 5,443 
transcripts for 1,320 genes where precisely one isoform fell into one cluster, and one or more 
isoforms fell into a different cluster (Fig. S17). In 2,408 of these cases, involving 7,208 
individual transcripts, an alternative splicing event was involved (as opposed to transcripts 
differing only by extensions of terminal exons). Of these, a total of 2,002 cases involving 6,149 
transcripts for 1,009 genes had sufficient counts of discriminative reads that we could use them 
for our comparisons, resulting in 5,733 possible pair-wise comparisons between alternative 
isoforms. 

We asked if the expression profiles for the discriminative reads showed the same level of 
differential stage-specific switching as the DCPM counts, which we previously defined as a 30% 
difference in isoform abundance in opposite directions in at least two stages. Among the 5,733 
transcript pairs that we could compare (all of which showed stage-specific switching in the 
DCPM profiles), 50% (2,889) showed stage-specific differential switching in the discriminative 
read profiles, with an average Pearson correlation of 0.76 between the two sets of profiles. Thus, 
while the discriminative reads show less variation overall than the DCPM counts, the profiles 
that do show variation correlate well with the DCPM data across the 15 stages used in the 
clustering. This is a very demanding test because the total counts for discriminative reads are 
lower and thus noisier than the DCPM counts, show less variation overall as noted above, and 
are not length-normalized as are the DCPM data. More specifically, of the cases where we found 
informative reads spanning the splice junctions only 52% of them had sufficient depth of 
coverage on the splice (>5 reads) to allow accurate quantitation. 

C.5. More Detail on “Pseudogenes”  

C.5.a. Pseudogene Assignment 
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Pseudogenes are usually identified by the rapid accumulation of mutations such as premature 
stop codons. They are created from protein coding genes either by duplication followed by 
disablement or from the integration of reverse transcription of processed transcripts into the 
DNA (38). By definition a pseudogene is not functional in the conventional sense of its protein-
coding parent. However, this does not preclude the "dead" pseuodgene sequence from acquiring 
new functions either as a transcribed RNA or even as a translated peptide. There have been a 
number of reports of and speculation on such apparently "revived" pseudogenes (38-42). 

In order to identify a list of possible C. elegans pseudogenes, we looked at a number of features 
including amino acid sequence identity, how much the pseudogene covers the parental gene, and 
modifications such as insertions, deletions, and frame-shifts. This analysis was performed both 
by using the automated pipeline PseudoPipe (43) and by hand-annotating the C. elegans genome 
with the help of data available in the WormBase database. Comparing the coordinates from the 
2,343 candidate pseudogenes identified by PseudoPipe and 1,541 identified by WormBase, there 
were 1,025 pseudogenes which had a nucleotide overlap of at least 50 bp between the candidates 
in each data set. The remaining sequences were reviewed manually, and it was determined that 
173 pseudogenes from PseudoPipe and 95 pseudogenes from WormBase should also be included 
in the list, for a final total of 1,293 (Fig. S19). The remaining sequences either overlapped with 
annotated genes, were too small and fragmented to be considered a pseudogene, or should have 
been curated as part of a functional gene. We also established the probable source (parent) gene 
for 1,198 pseudogenes. 

C.5.b. Pseudogene Transcription 

We investigated the 1,198 pseudogenes with identified parent genes for evidence of transcription 
based on the RNA-seq data. We found 323 of them to be abundantly expressed using the RNA-
seq read mapping procedure described in (14). In this method, all reads were aligned (using 
MAQ and cross_match) to the genome, splice junctions spliced leaders, and polyA libraries. The 
best match was then chosen with only a minor bias for a genome match first - reads with equal 
matches to the genome and other databases were placed against the genome.  The DCPM was 
calculated from these mapped reads. Pseudogenes were determined to be transcribed if they had 
a DCPM value of  >0.04 in at least one sample. This threshold is 100-fold higher than the 
minimum DCPM value in this set. 

In order to address the possibility that the reads were derived from the parent gene and not the 
pseudogene, we classified the pseudogenes into three subcategories. The first includes 
pseudogenes with expression levels at least two-fold higher than the parent gene. The second 
subclass contains pseudogenes for which the expression patterns of the pseudogene and parent 
are discordant across samples (see Fig. 1D for an example). Both of these cases indicate 
independent transcription of pseudogene and parent, arguing against mapping artifacts. The last 
subclass includes instances where the expression pattern of the pseudogene is concordant with 
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the parent gene across multiple samples, which by itself would not exclude mapping artifacts. 
Altogether 191 of the 323 candidates fell into the first two subclasses (87 and 104, respectively) 
and are thus likely transcribed independently from their parents. 

C.6. More Detail on “ncRNAs”  

C.6.a. Identification of Canonical miRNAs and Mirtrons 

Canonical miRNAs are produced by sequential cleavage of inverted repeat transcripts by the 
Drosha and Dicer RNAse III enzymes. We annotated novel canonical miRNAs using the 
miRDeep algorithm (44), and for confident annotation, required that the cloning of miRNA 
and star reads mapped to a precursor hairpin with 3' overhangs at both ends of the inferred small 
RNA duplex. A subset of loci was confirmed to be dependent on the Argonaute encoded by alg-
1 (45). In total, 24 confident novel miRNAs were deposited in the miRBase database. 

For mirtrons, we built an SVM model based on features of the 14 initially reported 
D. melanogaster mirtrons (46, 47) and ran this on the C. elegans genome as an independent test 
of its performance (48). Three of the four known nematode mirtrons (mir-1018, mir-62 and mir-
1020) ranked within the first 27 candidates genomewide; the fourth (mir-1019) presents a highly 
atypical 2:5 hairpin overhang and scored much lower (554th). We validated high-scoring 
predictions using publicly available small RNA data (45, 49-57), yielding 12 novel mirtrons that 
produced at least 5 small RNA reads with a dominant 5' end and extending to the intron 
terminus; 10 of these also generated star reads with appropriate duplex overhangs. 
NM_075944_in2 and NM_071513_in8 did not have star reads, but the recovery of >40 reads 
from both loci with precise 5' ends provided strong evidence of specific miRNA production. 
Several other loci with candidate evidence (i.e. <5 intron-terminal reads) were noted, which may 
reach strong confidence with additional sequence data. We also reclassified the previously 
annotated mir-2220 as a mirtron and recognized NM_075943_in1 to produce a mirtron from an 
unannotated splice site, for a total of 18 confident mirtrons in C. elegans at present. Several 
additional high-scoring predictions yielded <5 intron terminal reads and were classified as 
candidates. Full analysis of mirtrons in C. elegans is available at (58). 

C.6.b. Predicting Novel ncRNA Candidates 

C.6.b.i. Known ncRNAs 

The genome produces a variety of transcripts that do not code for proteins and function directly 
as RNA (non-coding or ncRNAs). Altogether at the start of the project there were 1061 known 
ncRNAs in C. elegans (Table S5). These include small and medium size RNAs (e.g. miRNA, 
snRNA, snoRNA, etc), and also long RNAs (e.g., rRNAs etc.) involved in mRNA translation 
and splicing.  
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C.6.b.ii. Building the 7k-set of Novel ncRNA Candidates 

First, using small RNA sequencing data alone, we defined 102 additional candidate canonical 
miRNAs (45), of which 42 have evidence of complementary strand sequence (providing 
confirmation of the miRNA) and of which 20 were recently incorporated into miRBase (59). We 
further tried to separate known ncRNAs from other genomic elements such as CDSs and UTRs, 
but found that they cannot be separated completely by any single genomic feature (e.g. 
conservation, small RNA sequencing data) (Fig. S21A, Left). Although discrimination improved 
when pairs of features were examined, it was still incomplete (Fig. S21A, Right). To address this 
incompleteness, we used a machine learning method to integrate nine genomic features to 
identify ncRNAs and predicted 7,237 novel ncRNA candidates (7K-set)(60). An example of a 
candidate ncRNA is shown in Fig. S21B. We found that many novel ncRNA candidates were 
expressed in embryos, which suggests the development functions of these candidates. Next, we 
also clustered novel ncRNA candidates with coding transcripts using the total RNA tiling array 
data. From GO analysis (Table S9), we found that some novel ncRNA candidates were clustered 
with coding genes that are DNA binding proteins and transcription factors.  

C.6.b.iii. Building the 21k-set of Novel ncRNA Candidates 

In addition to the 7K-set (60), we describe below how we constructed the 21K-set of ncRNAs. 
The construction of the 21K-set follows similar principles as those described above for the 7K 
set. However, it does not include DNA conservation and RNA secondary structure information. 

The tiling array signals were segmented into TARs (Transcriptionally Active Regions) using the 
maxgap/minrun algorithm (12, 13). Briefly, a contiguous sequence of probes exceeding a signal 
threshold (selected as described below) was connected to form a TAR. To account for noise, a 
total of 30 bp (about 1 probe) were allowed to fall below this threshold within a single TAR. 
Finally, TARs shorter than 100 bp (the total length of 4 probes) were discarded. The signal 
threshold was optimally selected according to the criteria of attaining an FPR of 0.05 when 
compared to a high confidence subset of the annotation. Details are provided in (11). 

In total, 95,069 TARs (37,026,882 nt in total) were collected from the union of 41 tiling array 
experiments (Table S3), of which the minimum length is 100 nt. 1,331 overlap with known 
ncRNA, and 22,487 include transcribed regions that are not overlapped with any annotated 
(confirmed or predicted) exons or known ncRNA. The reads from sequencing data from small 
RNA and polyA-selected RNA were also averaged for each tiling array TAR. Subsequently, 
different types of expression values were combined to classify each TAR as ncRNA, CDS, or 
UTR, using machine learning methods. Known ncRNAs, CDSs, and UTRs were selected as a 
gold-standard set for machine learning (Tables S6-8). Before classification, the 95,069 TARs 
were fragmented into 448,746 small windows (using sliding windows of 150 nt with a 75 nt step 
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size) (Fig. S20). Because of the sample preparation method, the tiling array TAR cannot inform 
as to which strand the transcript came from. 

Although lacking conservation and secondary structure information, the accuracy of the 
classification model for the gold-standard set in terms of AUC (area under the ROC curve) is still 
as high as 94.2% for ncRNA prediction from TARs (Table S7). When applying the classification 
model to the 49,648 novel transcribed windows (from 22,487 TARs), 45,913 were found most 
likely to be ncRNA, 3,294 were most likely to be UTR, and 441 were most likely to be CDS 
(Table S8). These 45,913 "windows" originated from 21,521 TARs out of the original set of 
95,069 TARs. This gave rise to the 21,521 predicted ncRNA TARs in the 21K-set. Subsequently, 
1,259 of the predictions in this set were found to overlap the predicted ncRNAs in the 7K-set. 
The genome locations of the 21K-set are available at (36). Note, the prediction accuracy of the 
21K-set is not as high as the 7K-set, and many of them could come from UTRs or unprocessed 
introns.  

D. More Detail on  
“Regulatory Sites and Interactions” 

D.1. More Detail on  
“TF-Binding Sites, Motifs, and Targets” 

D.1.a. Overview of the Experiments 

To date, large-scale projects aimed at mapping TF binding sites have been performed either in 
cell culture or in single-celled organisms, and have failed to link the identified regulatory 
elements to developmental events. We investigated binding sites within the whole animal using 
high-throughput sequencing ChIP (ChIP-seq) to map 23 GFP-tagged fusion proteins. Generally, 
the factors were mapped at the developmental stages during which they have their highest 
expression levels, as deduced using Green Fluorescent Protein (GFP) fusion proteins. At least 
two independent ChIP-seq experiments were performed for each factor.  

D.1.b. Scoring: Broad Regions and Narrow Summit Peaks 
The binding sites (broad regions) of each factor were scored using PeakSeq with a q-value 
threshold of 0.001 (61). Initially, we scored the peaks using the pooled reads from two replicas. 
This gave to an initial set of broad binding regions. We used these for determining targets and to 
define HOT regions (see details in D.1.e. and D.2, respectively). 

Next, we progressively filtered this set to refine our peak calls. First, we required regions to 
overlap between the regions between replicates, creating a subset of broad regions (the 
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overlapped set of broad binding regions). We only kept those regions reproduced in both 
replicates and any regions less than 50 nt were removed (62). We refined region summits, using 
PeakRanger to identify the multiple summits inside each broad region found by PeakSeq 
(Fig. S24). PeakRanger takes the broad regions and uses second-derivative information to find 
local summits. In PeakRanger raw read signals are first enhanced to reduce the potential of 
producing false positives and then traversed using a summit detection algorithm.  

We extended each of these summits with a 100 bp flanking each side (if the initial region was 
smaller than 200 bp we just kept the small region size). The narrow binding regions (maximum 
200 bp) around the summit found by PeakRanger were defined as “narrow summit peaks”. The 
rationale for using 200 bp as the width is that this is the median shear size used in the ChIP-seq 
experiments. The 200 bp peak width was further validated by the conservation calculation in 
sect. F.3.c.  

The pipeline yielded a final set of summit peaks that was used for genome accounting, 
conservation analysis and TF site predictions. The numbers of total mapped reads and the 
number of narrow peaks for 23 factors are shown in Table S10.  

For a comparison, we also analyzed the peak centers using the SPP peak calling algorithm (63) 
and used some of the SPP summits for the motif finding. A strong rationale for keeping the 
scoring compatible with PeakSeq and SPP is that these two programs were chosen as the "peak 
callers" for the ENCODE Human project, based on extensive peak caller comparisons. We 
wanted the scoring in worm modENCODE to be compatible with that in ENCODE, which 
enabled the comparisons between worm and human in sect. G. 

D.1.c. Binding-Site Validation 

Control experiments using antibodies directed against native proteins demonstrate that tagged 
protein binding sites correlate strongly with those from native protein. Also, TF binding sites 
identified through ChIP-seq have been verified through an independent method, ChIP-qPCR (62, 
64).   

We performed a series of analyses to examine the quality of our ChIP-seq experiments. Much of 
these are discussed in detail in (64) and summarized here.  First, we selected several factors (for 
which primary antibodies are available) to compare our transcription factor (TF) tagging strategy 
for ChIP to native protein ChIP. We found that: (1) GFP-tagged AMA-1 has the same binding 
pattern as does native AMA-1 (the correlation coefficient between samples is 0.934), (2) the 
binding sites of GFP-tagged PHA-4 from embryos and starved L1s are verified by comparing our 
list of genes to the list of known pharynx developmental genes (90/238, P<1.7e-13), and (3) the 
binding sites of GFP-tagged HLH-1 were validated by comparing our result to an unpublished 
data set of binding sites for endogenous HLH-1. Overall, these analyses (to date) are 
consistent with the conclusion that the tagged factor has binding and regulatory properties 
similar to those of the native proteins, and that differences between the tagged factor and native 



 

 

protein ChIPs are well within the expected levels of variation which are commonly observed 
between replicate ChIP samples using the native protein. Second, many PHA-4 binding sites 
from embryos and starved L1s identified by ChIP-seq were verified through an independent 
method: ChIP-qPCR (76% of the embryonic sites and 74% of starved L1 sites with two-fold or 
higher enrichments).   
 
Finally, we calculated the functional enrichments of protein-coding genes targeted by each of the 
23 factors. Many Gene Ontology (GO) terms related to developmental processes were enriched 
for the list of genes bound by many factors in this study, suggesting the general roles of these 
factors during C. elegans developmental processes. More importantly, for factors with known 
functional roles we identified specific enrichment of GO terms that match these functional roles 
(62). In conclusion, these analyses demonstrate the high quality of our ChIP-seq experiments.  
 
D.1.d. Identification of TFBS-associated Sequence Motifs  
 
A major characteristic of most TFs are their sequence recognition motifs. These motifs are 
typically short, inexact sequences ranging in size from 8 to 12 bp (65). We developed a 
technique to identify high-likelihood cis-regulatory motifs from the modENCODE ChIP-seq TF 
binding data sets. We combined information from both PeakSeq (61) and SPP (63) with 
information from the six-way nematode alignment (see Conservation section, main text). For 
these calculations we excluded the HOT regions (described below and in the main text). We 
weighted sequences under peaks for each TF by their degree of evolutionary constraint and 
distance from the peak center. To discover motifs, weighted sequences were processed with the 
MEME sequence-pattern discovery algorithm (19, 20) (along with background sequence 
generated by a fourth-order Markov model from peak flanking regions), applying a p-value cut-
off of 0.05. Although we used evolutionary constraint to identify putative TF motifs, the 
presence or absenceof motifs was not used during the analysis of evolutionary constraint under 
TF binding sites. Each motif predicted by MEME was tested for specificity by measuring the 
frequency of the motif occurrences in peak regions relative to random upstream sequences and 
peaks from other TF data sets (Fig. S35C). We also performed localization tests for each motif 
relative to point binding positions (Fig. S35B). The initial pattern discovery algorithms 
identified statistically enriched motifs for 21 of the 23 TFBS profiles, but motifs for only 8 TFs 
remained after specificity testing (Fig. S35A). Of the three TFs with previously described 
putative binding site motifs, we recovered the previously described motif for HLH-1 and PHA-
4, but failed to recover the published motif for SKN-1.    
 
D.1.e. Identification of Target Coding and Non-coding Genes  
 
The details of data sets for 23 factors (22 TFs and one dosage compensation factor) are listed in 
Table S10. We used the middle point of the binding region to calculate the distance to the TSS  
of genes and determine the targeted genes for each TF. We used a simple approach: TF binding 
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peaks within 500 bp upstream or 300 bp downstream of a gene’s TSS were assigned to that gene. 
This is a fairly conservative approach; it is possible to take significantly larger values for the 
upstream threshold without greatly affecting the results. This is borne out by analysis of the 
aggregation plots in Fig. S22C. Aggregation plots were drawn with ACT (66). 

We extracted C. elegans gene annotations from WormBase. Although the TSSs for the majority 
of C. elegans miRNAs have not been mapped, it has been shown that DNA regions upstream of 
the pre-miRNA are sufficient to initiate the transcription of miRNAs (67). Therefore we 
identified the target miRNAs by examining the existence of TF binding peaks around the start 
position of pre-miRNA transcripts.  

In comparison to coding genes, binding sites assigned to known ncRNAs are even closer to the 5' 
end of the transcripts. Consequently, binding sites could be readily assigned to specific protein-
coding or known-ncRNA genes, based on their proximity to the TSS. Most binding sites were 
assigned to annotated loci, but a subset remained unassigned for each factor. Although most 
factors bind sites near both protein coding and known ncRNA genes, GEI-11 binds mainly to 
ncRNAs (Fig. S22). We also examined whether any TF binding sites were adjacent to our 
previously undescribed novel predicted ncRNAs (intergenic ncRNAs from the 7k-set, see 
above). Approximately ~59% are potential targets of the 22 TFs examined, significantly more 
than would be expected by chance (P < 0.001, estimated by the z-score, assuming a normal 
distribution). This provides additional evidence for their activity.  

We also compared the targets shared by all TF pairs. Pairwise correlation analysis of target genes 
revealed that factors with related functions often show substantial overlap in the target genes to 
which they bind (Fig. S23A), such as MAB-5, LIN-39 and EGL-5. They are more strongly 
correlated with each other in terms of targets than with the other four HOX genes analyzed, 
which have more diverse developmental roles. In contrast, factors binding at pairwise correlation 
of miRNA targets show that the factors bound to them tend to cluster together more by stage 
than by factor type (Fig. S23B). For example, one group of 4 different TFs analyzed in embryos 
target similar miRNAs, whereas a different group of six disparate TFs analyzed at L3 target 
another set of miRNAs. Integrated regulation by multiple TFs at a given developmental stage 
may have to do with the fact that the expression of miRNAs tends to show strong stage-specific 
enrichment. The large fraction of the genome associated with sites and the high number of genes 
targeted from the relatively small set of TFs we analyzed (from >900 candidate TFs in 
C. elegans) suggests that each gene may have sites for many factors. 

D.2. More Detail on “Clustered Binding in HOT Regions” 

D.2.a. Identification of HOT Regions, with Sensitivity Analysis 
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Using the 23 factors' ChIP-seq data sets, we determined the number of factors bound at each base 
in the C. elegans genome. Out of the 16,707 genomic regions identified as having significant 
enrichment in at least one of the ChIP-seq data sets (using the broad peak regions described in 
D.1, with a q-value cutoff of 1e-5), 304 Highly Occupied Target (HOT) regions were 
significantly enriched in 15 or more factors (36). We combined overlapping peak regions across 
the 23 factors to annotate each of the 16,707 regions based on the maximum number of factors 
associated at any base point within the called peak. To determine whether this would be expected 
by chance, we randomly re-assigned peak regions within the 16,707 regions bound by at least 1 
factor. Using 1,000 iterations of random re-assignments, no regions associated with 15 or more 
factors were observed (Fig. S25A). 

We next wanted to determine whether HOT regions remained bound by 15 or more factors when 
peaks were defined more narrowly. Peaks were re-defined as the region 26-, 50-, 100-, 150-, or 
200-nt wide centered on a peak summit (identified by PeakRanger as described in D.1). We 
found that over 80% of HOT regions remained bound by 15 or more factors when peaks were 
narrowed to 200, 150, or 100-nt wide (Fig. S25B). These results indicate that TF binding in HOT 
regions occurs within a 100bp window.  

We make available through the supplementary website both core 304 HOT regions and alternate 
lists of HOT regions defined using narrower peaks (36). 

We used multiple experimental and computational approaches in order to confirm that 
enrichment for these regions was not simply an artifact of the ChIP-seq procedure. HOT regions 
were not significantly enriched when IgG antibody was used on transgenic animals or when GFP 
antibody was used on N2 animals lacking a GFP-tagged TF. These negative controls demonstrate 
that these regions are not simply a chromatin or GFP-antibody artifact (Fig. S26A). As an 
additional negative control, we observed that DPY-27, which is known to bind preferentially to 
the X chromosome (68), is almost exclusively enriched at regions (including HOT regions) on 
the X chromosome and is not enriched at HOT regions on the autosomes (Fig. S26B). As a 
positive control, we immunoprecipitated endogenous LIN-15B from wild-type animals using 
anti-LIN-15B antibody, and observed binding peaks in HOT regions similar to those observed 
using the GFP antibody on lin-15B::GFP animals (Fig. S26A). 

D.2.b. Expression of Genes Associated with HOT Regions 
We used a stringent criterion to associated genes with HOT regions. Genes were associated with 
peak regions if they were within 1kb upstream or 500nt downstream of the gene’s TSS. For 
staged populations, gene expression levels for all C. elegans WS190 transcripts were measured 
by DCPM in RNA-seq data as described previously (14), and for genes with multiple annotated 
alternative transcripts, the average expression level of all transcripts was used. We also used two 
different types of tiling array data sets described in (21): tissue-specific embryonic expression 
measurements (performed by expression of GFP under tissue-specific promoters followed by 
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FACS sorting), and tissue-enriched measurements (performed by tissue-specific promoter-driven 
expression of epitope-tagged polyA binding protein followed by purification of RNA bound by 
the tagged polyA binding protein--the mRNA tagging method described in (76)). Tiling array 
data were analyzed by first computing the PM - MM value for each probe. Experiments were 
conducted in triplicate and quantile normalization was used to ensure values from the three 
replicates were comparable. Data from the three replicates were combined using pseudomedian 
smoothing (12) over a window size of 110 bp, and transcript expression levels were calculated as 
the median signal value for all probes overlapping the transcript’s exonic regions by at least 
50%. Only the longest isoform was used for genes with multiple transcripts. For inter-sample 
comparison, we normalized these expression levels by dividing the values by the slide median 
(i.e. the median of all probes on the array). In the staged population RNA-seq experiments as 
well as every tissue from both tissue-specific and tissue-enriched tiling array data, HOT genes 
had significantly higher levels of expression than genes bound by 1-4 factors (all P < 1e-15 based 
on Kolmogorov-Smirnov test) (Fig. S28). 

D.2.c Comparing Targets: Factor-Specific vs. HOT  

D.2.c.i. Motif Enrichment and Tissue Specificity  

HLH-1 is a muscle-specific TF with a consensus binding motif CAGCTG ((70), Fig. S35).  
Motif enrichment was calculated by simple hexamer frequency counts, and p-values were 
calculated using the chi-square test. Genes with L1 muscle-enriched expression were obtained 
from (69). To compare all TFs, we additionally made use of L4 intestine-enriched transcripts 
(71) and embryonic tissue-specific tiling arrays described above (21). To identify embryonic 
tissue-specific genes, each embryonic tissue-specific array was first linearly normalized to the 
embryonic reference array to correct for array-specific scaling effects. Next, for each gene in 

each tissue, we calculated a z-score for specificity: , where  
and N=11 tissues (including the reference array). Genes with ztissue>2 were deemed “tissue-
specific”.  

For this analysis, we used three well-characterized tissue-types: intestine, hypodermis, and body 
wall muscle. We identified TF-tissue pairs wherein genes associated with factor-specific peaks 
for a TF were significantly enriched (above the background set of all genes) for the set of tissue-
specific genes (requiring both fold-change greater than 2.5 and P < 1e-5 by Fisher’s exact test). 
TF factor-specific targets were significantly enriched for the tissue-specific expression compared 
to HOT targets for 13 of the 15 TF-tissue pairs that met this criteria (P < 0.01 by Fisher’s exact 
test), and in 8 cases were still significant at a P<0.0001 cutoff (Fig. S27B). In addition to HLH-1, 
we considered previously identified binding motifs for ELT-3 (GATAA (72)), MDL-1 
(CACGTG (70)), and PHA-4 (T[AG]TT[TG][AG][CT] (73)). For the three additional factors, 
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we observed a drop in motif enrichment between factor-specific targets and HOT regions similar 
to that observed for HLH-1 (Fig. S27B).  

D.2.c.ii. Comparison of Enrichment in Essential Genes  

Essential genes were defined as genes having an RNAi phenotype of 100% larval arrest, 
embryonic lethality, or sterility in a genome-wide screen for RNAi knockdown phenotypes (74). 
Significance was calculated by the chi-square test (Fig. S27C).    

D.3. More Detail on “Building a TF Hierarchy” 
The network was visualized with Cytoscape (75) and analyzed with tYNA (76). We examined 
the difference of TFs at different layers of the hierarchical network we constructed. Specifically, 
we compared the tissue specificity scores and degrees in protein-protein interaction network of 
TFs in top layer with those in lower layers, and calculated the significance using the Student t-
test.   

Expression levels of all C. elegans genes at 8 different tissues at L2 stage were measured using 
tiling arrays. The tissues are defined as in Table S3. Tissue specificity score for a gene was 

calculated as follows: , where  is the ratio of the gene expression level in 
tissue i to the gene’s sum total expression level across all tissues, and  =1/8 for all tissues, is the 
fractional expression of a gene under a null model assuming uniform expression across tissues. A 
greater tissue specificity score suggests more specific expression in a single or multiple tissues, 
whereas a score of zero suggests uniform expression. Apart from tissue specificity, the stage 
specificity score of a gene throughout its developmental time course is defined in a similar 
fashion. 

 
The C. elegans protein-protein interaction data were downloaded from the Worm Interactome 
Database (77). The data contain 178,152 interactions that were determined by a combination of: 
yeast-two-hybrid experiments, literature curation and by computational analysis.  

D.4. More Detail on                                                                    
an “Integrated miRNA-TF Network and its Motifs” 

D.4.a. Identification of Conserved miRNA Binding Sites in 3’UTRs 

We made new predictions of candidate miRNA binding sites in C. elegans mRNAs using the 
integrated transcript models. Overall, we identified a total of 20,427 predicted target sites within 
4,866 3'UTRs for 2,244 genes. The target sites are conserved in C. briggsae.  (In order to 
identify this conservation, we use genome alignments between C. elegans and C. briggsae, and 
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extracted the alignments corresponding to annotated 3'UTRs in C. elegans.  Within those aligned 
regions, we identified target sites for C. elegans that are conserved in the aligned C. briggsae 
sequences (see Sect. F).  

In more detail, we used the PicTar algorithm (78) to identify conserved microRNA target sites 
within annotated 3'UTRs from the aggregate integrated transcripts model (Table S13 and (36). 
We applied the version of PicTar described in (79) with the slight modification that a perfect 
seed site if covering the first 5' base of the miRNA was required to match an adenosine at this 
position. We used a non-redundant subset of 3'UTRs, considering only those which do not 
overlap any CDS in an alternative transcript isoform for the same gene, and excluding a small 
subset of transcripts (~4,500) for which we identified more than one putative ORF in different 
reading frames. We used 183 miRNAs, either annotated in miRBase14 (59) or newly identified 
from C. elegans embryos (56) using miRDeep version 2 (44), and genome alignments 
between three (C. elegans, C. briggsae, and C. remanei) or five (also including C. brenneri and 
C. japonica) species. This set of predictions for the aggregate integrated transcripts model are an 
alternative to our recently published predictions for the C. elegans 3'UTRome (17), which use 
3'UTRs for AceView (80) gene models. 

We also independently searched for perfect Watson-Crick complementary seed sites covering the 
first or second 5' miRNA heptamer which are prefectly conserved. These predictions should be 
identical to the 'TargetscanS' predictions (81) and, by definition, are identical to the vast majority 
of PicTar predictions. Indeed, a comparison of the results between the two algorithms revealed 
that PicTar identified 99% of seed sites predicted by TargetScan, and conversely, TargetScan 
identified 89% of seed sites predicted by PicTar. The reasons for the additional PicTar 
predictions are (i) PicTar uses a more general definition of 'conserved seed site', allowing for 
evolutionary changes between the different heptamers in the same alignment, (ii) PicTar also 
effectively locally realigns target site candidates to overcome alignment problems, and (iii) 
PicTar also predicts imperfect, conserved seed sites if very significantly compensated by 
additional basepairings between the remainder of the miRNA and the mRNA. Previous 
independent comparisons of miRNA target prediction algorithms using other data sets have 
shown that TargetScan and PicTar are top performers in the field, and generally produce the 
highest overlap with experimentally determined sites ((82); reviewed in (83, 84). Compared to 
our earlier analysis of C. elegans 3'UTRs (79), our new prediction sets ((17) and this study) show 
a higher signal-to-noise ratio compared to synthetic miRNAs of similar composition (1.8-2.4 and 
2.1-3.4 for 3-way and 5-way alignments, respectively, using the method described in (78)). We 
attribute this to a combination of better multi-species genome alignments and exclusion of 
genomic sequence regions that are not supported by experimental evidence (previous predictions 
used up to 500nt downstream of the CDS when no annotated 3'UTR was available). 

D.4.b. Calculation of Overrepresented Motifs in the Integrated Network 
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In order to identify the patterns in the integrated network that are more frequent than by chance, 
we enumerated all the possible patterns with 3 nodes. The frequencies of these patterns in the 
real network were compared with those in 1,000 random networks. The random networks were 
generated by rewiring the real network, while keeping its topological statistics constant; i.e., 
keeping the same number of coding gene targets and the number of miRNA targets for a TF 
node, the number of regulatory TFs and targets for a miRNA node, and the number of regulatory 
TFs and miRNAs for a target gene node. For each pattern, a z-score was calculated as 

follows: , where Nreal and Nrand are the number of corresponding patterns in 
the real network and in the random networks respectively. A pattern in the integrated network 
with a significant positive z-score indicates over-representation, whereas a significant negative 
one indicates under-representation. The p-value for a z-score was calculated by referring to a 
standard normal distribution. For the network motif analysis, we only used the proximal targets 
(500bp upstream to 300bp downstream). 

E. More Detail on  
“Chromatin Organization and its Implications” 

E.1. More Detail on                                                             
“Models Relating Chromatin to TF Binding”  

For each TF binding experiment, the bins that overlap with the binding peaks form the positive 
set. The same number of other bins was randomly sampled from the whole genome as the 
negative set. Half of the bins in the positive and negative sets were used as training examples to 
train support vector machine (SVM) models using default parameters in Weka (85). The other 
half was used to test the performance of the SVM models. Model accuracy was evaluated using 
ROCs, as well as the area under the ROC curves (AUROC). We also used precision-recall (PR) 
curves as a secondary measure, and arrived at the same general conclusions. Different feature 
sets were used in different configurations. Each of the single-feature models involves only one 
feature. The integrative model involves all features, and the stage-specific models involve only 
features from one development stage. 

E.2. More Detail on                                                         
“Models Relating Chromatin to Gene Expression”  

The C. elegans genome was divided into bins of 100 bp. For each bin, the average signal was 
computed for each chromatin feature and for each TF binding experiment. Consequently, each 
experiment is associated with a vector of signals. Correlations were computed as the pairwise 
Pearson correlations between these vectors. We also computed Spearman correlations and 
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normal-score correlations between the vectors. The correlation patterns are similar for the three 
correlation functions, and we include only the results based on Pearson correlations. 

F. More Detail on “Conservation Analysis” 

F.1. Multiple Alignments  

The following is an extract of the information located at (86), which describes the methods used 
to build the six-way nematode alignments. This URL also provides links to downloadable files 
containing the nematode sequences, six-way alignments and conservation scores produced by 
this analysis. 

The nematode sequences analyzed here were obtained from the following sources: C. briggsae: 
Washington University at St. Louis School of Medicine Genome Sequencing Center 
(WUSTLGSC) version 1.0, January 2007 (87); C. remanei WUSTLGSC version 15.0.1 May 
2007 (88); C. brenneri: WUSTLGSC version 6.0.1 February 2008 (89); P. pacificus: 
WUSTLGSC version 5.0 February 2007 (90); C. japonica: WUSTLGSC version 3.02 March 
2008 (91). 

Pairwise alignments with the C. elegans genome were generated for each species using blastz 
from repeat-masked or window-masker masked genomic sequence. Pairwise alignments were 
then linked into chains using a dynamic programming algorithm that finds maximally scoring 
chains of gapless subsections of the alignments organized in a kd-tree. The scoring matrix and 
parameters for pairwise alignment and chaining were tuned for each species based on 
phylogenetic distance from the reference. High-scoring chains were then placed along the 
genome, with gaps filled by lower-scoring chains, to produce an alignment net. 

The resulting best-in-genome pairwise alignments were progressively aligned using 
multiz/autoMZ to produce multiple alignments. The multiple alignments were post-processed to 
add annotations indicating alignment gaps, genomic breaks, and base quality of the component 
sequences.  

F.2. Evolutionary Constraint Calculations 

Conservation scoring was performed using the PhastCons package, which computes 
conservation based on a two-state phylogenetic hidden Markov model (HMM) (92). PhastCons 
measurements rely on a tree model containing the tree topology, branch lengths representing 
evolutionary distance at neutrally evolving sites, the background distribution of nucleotides, and 
a substitution rate matrix. Conserved and non-conserved 6-way tree models were constructed 
from the information in (93) with the branch length for P. pacificus arbitrarily set manually for 
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the phastCons starting-tree model. The branch lengths in the conserved and non-conserved tree 
models were produced by the phastCons tuning steps using phyloBoot. The phastCons 
parameters used for the conservation measurement were: expected-length=15 and target-
coverage=0.55. 

F.3. Coverage Analysis  

F.3.a. Overview 

Because genomic elements frequently overlap, when we assigned fractions of the whole and 
constrained genome to element classes we must define an order in which we partitioned the 
genome among the elements. For the purposes of this analysis, we partitioned the genome into 
regions covered by gene transcription annotations including coding exons, UTRs, and ncRNAs. 
Regions covered by introns were excluded from the coverage analysis except for those portions 
that intersected with another functional element. We also included the gene-related pseudogene 
annotations, transcription factor binding sites, chromatin associated factors, and dosage 
compensation factors. The result of this choice is to assign a smaller portion of the genome to 
annotations added at the end than they would receive if the order were reversed. Fig. S44 gives a 
detailed representation of how the proportions of the whole and constrained genome are covered 
by elements, by showing both the unique coverage of each element class as well as the amount 
that overlaps with previously-added elements whereas Fig. 8A shows only the former. 

F.3.b. Use of GSC Statistic 

For calculating the confidence intervals for the proportion of annotated regions expected to 
contain constrained regions by chance, we used the Genome-Structure-Correction (GSC) statistic 
(94, 95), which corrects for internal correlations of size and position within the annotations 
and within the constrained regions. 

F.3.c. Calculating the Genomic Coverage of TF-binding sites 

The ChIP-seq technique used to identify transcription factor binding sites produces peaks that are 
broader than the true physical binding site. The width of the peaks depends on a number of 
technical factors, the chief of which is the average size of the chromatin fragments used for 
immunoprecipitation following experimental shearing. Complicating this is the fact that several 
transcription factor-binding sites may be located close to one another, resulting in broad peaks 
that contain several subpeaks or “summits.” 

During the genomic coverage analysis, we did not wish to overestimate the coverage of the 
genome by transcription factor binding sites. However, we felt that the minimalist approach, 
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which is to use the size of the TF binding recognition motif, was too extreme. The motifs are on 
the order of 8-12 bp in length, but the TF typically binds to chromatin in association with a 
complex of cofactors, and the actual chromatin-associated region may be much larger. 

Our pragmatic approach was to call TF binding sites using PeakRanger, which is a 
refinement of the PeakSeq algorithm (61) that uses coverage signal topography to accurately 
identify summits within a broad peak (see section D.1.a). We then validated this choice by 
preparing profile plots of each TF experiment in which the mean PhastCons evolutionary 
conservation score was plotted against the distance from the center of each peak. As shown in 
Fig. S46 for three representative TFs, the constraint score reaches its maximum within 0-20 bp of 
the center of the peak, and reaches its half maximal level at roughly 100 bp from the center. On 
this basis, we used the peaks derived from this algorithm for all genomic coverage calculations 
described in the text. 

G. More Detail for the “Discussion”:  
Comparing Human and Worm Annotation 

In order to compare the results obtained in C.elegans by the modENCODE Consortium against 
those obtained by the Human ENCODE Pilot Project (94), we compared the amount of 
transcription and binding by transcription factors between the C. elegans and human genomes. 
We further compared aggregation plots for both RNA Pol II and matching histone modifications. 
Finally, we compared the amount of conserved bases that can be experimentally annotated 
between C. elegans and human. 

G.1. Analysis of the Amount of Transcription and TF 
Binding 

For two representative samples from the ENCODE pilot (Placental and HeLa PolyA RNA) and 
modENCODE (L2 PolyA RNA) projects, we compared the transcribed genomic fractions (Table 
S16). For both ENCODE and modENCODE, transcription was detected using tiling arrays. We 
also examined the amount of transcription in genic regions (exonic and intronic) and intergenic 
regions and observed a similar percentage of intergenic transcription (15.8% (Placenta) and 
44.0% (HeLa) for human ENCODE and 15.6% for C. elegans modENCODE), consistent with 
significant amounts of novel intergenic transcription in both species. We used GENCODE 
annotation for human and WormBase WS190 annotation for C. elegans. Similarly, for a number 
of representative transcription factors we compared the amount of genic versus intergenic 
binding between ENCODE and modENCODE. We selected the following ChIP-chip datasets 
from the ENCODE Pilot Project: STAT1, cFos, cJun, CTCF and CEBPe (the first three were 
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performed in HeLa cells and the last two in HL60 cells). For the modENCODE project we 
selected CEH-14 (L2), EGL-27 (L1), MAB-5 (L3), PES-1 (L4) and PHA-4 (EMB). We first 
observed that for both human and C. elegans, the majority of transcription factor binding occurs 
in intergenic regions (88% for human and 91% for C. elegans) (Table S15). We also observed 
that the fraction of intergenic sequence that is bound for each transcription fraction is lower for 
C. elegans compared to human (1.11% versus 1.80%). Given the significant difference in the 
sizes of the genomes, it is not clear a priori whether or not we expect to see a greater fraction of 
intergenic binding in human. A complicating factor is that the human TF binding experiments 
were performed using ChIP-chip, which has lower resolution than ChIP-seq. 

G.2. Aggregation Analyses: RNA Pol II and Histone 
Modifications  

We first compared aggregation plots of RNA Pol II ChIP-Seq signal around human TSSs and 
C. elegans TSSs. For human, we used published RNA Pol II ChIP-Seq data from HeLa cells (61) 
which was assayed as part of the whole-genome phase of the ENCODE Project. We compared 
this dataset against C. elegans RNA Pol II ChIP-Seq performed in the L4 stage of development. 
CCDS (96) TSSs were used for human and TSSs from WormBase WS180 (97) were used for 
C. elegans. In Fig. S49 we see that the normalized aggregation plots look very similar. Similarly, 
aggregation plots for histone modifications common to both modENCODE and ENCODE Pilot 
phase were generated over both TSS and TTS. Fig. S50 (drawn to be comparable to Fig. 6) 
shows data from (98) based on NGS ChIP-Seq data. The signal values are from the NPS 
algorithm used to process the ChIP-seq data at nucleosome resolution (99). Unlike the case of 
Pol II, the histone marks appear different in C. elegans and human. 

G.3. Conservation Analysis  

In comparison to the evolutionary constraint analysis published by the Human ENCODE Pilot 
Project (94), the region of the C. elegans genome under purifying selection is much larger 
(29.6% vs 4.9%, Fig. S48). This finding reflects both the compact nature and the higher 
proportion of coding vs. noncoding regions in the nematode genome. There are also differences 
in how the various classes of functional elements contribute to the constrained portion of the 
genome. The biggest difference is the amount of unannotated constrained bases, which was 40% 
in the ENCODE pilot, and about half this value (20.5%) in modENCODE (Fig. S48). This 
difference is almost entirely due to the proportion of constrained bases covered by coding exons. 
In the ENCODE pilot, 32% of the constrained portion of the genome was attributable to coding 
exons, while in modENCODE, over 53% of constrained bases are coding. Other annotations, 
including UTRs and annotations of classes involved in transcriptional regulation and chromatin 
maintenance, are in similar proportions in ENCODE versus modENCODE. Hence, we can infer 
that C. elegans constrained genome contains a substantially higher proportion of coding bases 
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than the regions sampled by the ENCODE pilot, and speculate that C. elegans may have a 
smaller proportion of its genome devoted to regulation, chromatin maintenance, or other 
functions. However, our ability to extrapolate from the ENCODE pilot to the whole human 
genome is limited by the small amount of the human genome that was sampled in the pilot (1%) 
and the fact that the ENCODE pilot’s choice of human genomic regions to be analyzed was not 
entirely random. In addition, a recent study’s re-estimate of the proportion of the human genome 
under evolutionary constraint was revised upwards to 6.5-10% (100), which will also affect the 
interpretation of the ENCODE results. A full comparison will have to await the publication of 
the full ENCODE data set. 
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Supplementary Figures 
Fig. S1: ChIP-chip and ChIP-seq comparison 

A. Pairwise Scatter plot and correlation between Pol II ChIP-chip and ChIP-seq replicates with 
combined profiles at two developmental stages (early embryo, left and L4, right). The sample 
names are shown on the diagonal. In the lower triangular part of the panel, each blue dot 
represents the median signal levels of ChIP-chip (MA2C score) and ChIP-seq (sequence read 
count) within a 1kb-segment on the genome. The upper triangular part provides the correlation 
coefficient of each pair. 

B. The heatmap image represents pairwise correlations between ChIP-chip and ChIP-seq 
combined profiles at early embryo and L4 stages, and is hierarchically clustered by both rows 
and columns. It is shown that the variation between the two platforms at the same stage 
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(correlation coefficient of about 0.7) is smaller than that between the two different stages of the 
same platform (correlation coefficient of 0.4-0.53). 

C. The venn diagrams show the overlap of the top 3000 Pol II binding sites identified by ChIP-
chip (blue circle) and ChIP-seq (red circle) in early embryo (left) and L4 (right) stages. It can be 
seen that more than 2/3 of Pol II binding sites were commonly identified by the two platforms. 

Fig. S2: Correlation of RNA expression levels for young adult between 
RNA-seq and tiling array platforms   

Each data point represents a gene. To account for multiple isoforms, a gene is here defined as the 
union of all exonic nucleotides. RNA-seq expression levels per gene were measured using 
RPKM, and tiling array levels were measured using the mean intensity of probes falling within 
exons. The genes in the upper left likely represent cross-hybridization in tiling arrays. 

Fig. S3: Numbers of RNA-seq reads 

Total reads along with numbers of uniquely and multiply aligned non-rDNA reads for each of 
the 19 C. elegans stages and samples. Total reads are defined as those that passed the Illumina 
quality filters.  The largest proportion of non-uniquely aligned reads are those aligning to rDNA 
regions of the genome.  

Fig. S4: RNA sequencing depth analysis 

A. Density plots of the expression of 20,051 genes in WormBase190. Each line corresponds to a 
sequencing depth. The legend reports the number of mapped reads (in millions). The two peaks 
represent genes not expressed (left) and expressed (right) at each sequencing depth. Note that the 
number of non-expressed genes drops sharply at first as sequencing depth increases, then reaches 
a plateau. 

B. Pair-wise comparison of the density plots. Y-axis reports p-values of the Kolmogorov-
Smirnov test as a function of depth of sequencing (x-axis). The dotted line shows a p-value of 
0.01. Higher p-values (>0.01) indicate no significant difference between the distributions. The 
plot shows that a sequencing depth between 13.4 and 16.8 million reads is sufficient to capture 
most expressed genes in whole animal samples. 

C. Rate of gene discovery. The number of genes with RPKM=0 are reported as a function of 
sequencing coverage. The equation reports the coefficients and the R2of the best fitting 
exponential curve. The fitted curve is: Number of non-expressed genes = 8.5 x (depth of 
sequencing) -0.88(R2=0.90). 
 
Fig. S5: Transcript building 
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This diagram illustrates the process of gene model construction. The top half shows the various 
features identified through RNA-seq and the bottom half shows the resultant models. To build 
gene models in regions across the genome we search for the most abundantly represented splice 
junction, indicated by “(1)”, and then move away in both directions until another feature is 
encountered. Moving to the right in this example, coverage continues until a second splice 
junction is encountered, so the model incorporates this junction and continues through the next 
area of coverage until the end of coverage is encountered.  Here, this position corresponds to a 
polyA site, indicating a transcript stop signal (black line). Moving to the left of the initiating 
splice junction, a splice junction is again encountered and incorporated. The first gene model is 
completed when the end of coverage is encountered. A splice junction indicated by “(2)”  that 
was not incorporated into the first model is then used to initiate a second gene model.  Moving to 
the right, this gene model is the same as model 1. Moving to the left, it encounters the end of 
coverage, with an associated start site (either a spliced leader junction or a strand bias signal) and 
the model is complete. Orientation is implicit in the sequences of the splice junctions and the 
start and stop sites. 

Fig. S6: A complex isoform example 

This region of the transcript ZK783.1, homologous to human fibrillin-1, illustrates that 
alternative splicing in C. elegans  can be quite complex. The current WormBase model (WS190) 
is shown at the top with our aggregate integrated transcript models shown below. Raw read 
counts per base for early embryo (orange) reveal clearly evident splice junctions, whereas in L3 
(blue gray), a series of introns are apparently read through without splicing until splicing to 
either the penultimate exon in the region or skipping this to the final exon shown. 

Fig. S7: Features defined by RNAseq as compared to WormBase as of 
January, 2007 (WS170) 

Number of features identified by stage as compared to features in WormBase (WS170) when the 
modENCODE project began. The two right most bars represent the RNA-seq-only aggregate set 
and the aggregate integrated transcript set created from all available C. elegans transcriptome 
data. All features (TSS is Transcript Start Site, SL1 and SL2 are Spliced Leader sites) were 
clustered when within 25 bases of one another. For example, if there were three different polyA 
sites within 25 bases of one another, they were counted as a single polyA site. 

Fig. S8: Number of confirmed splice junctions over time 

This figure indicates the significant contribution of RNA-seq to annotating the C. elegans 
genome. There were 11,467 splice junctions confirmed when the complete C. elegans genome 
sequence was first published (101). The first rise in 2003 was a result of the OST Project (102) 
and the remaining increases were a result of the modENCODE project (e.g. (14)). The number of 
RNA-seq datasets added at each time point is indicated. 
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Fig. S9: Proportion of splice junctions confirmed by various methods 

The large overlap in splice junctions confirmed between RNA-seq, RT-PCR/RACE and mass 
spectrometry (16) provide confidence in the methods used for identifying confirmed junctions by 
RNA-seq. 

Fig. S10: Saturation of discovery of additional ncRNAs and coding 
exons with additional RNA-seq data sets 

We are presently utilizing a number of approaches to ncRNA discovery, and our initial efforts 
have revealed thousands of new ncRNAs from the C. elegans genome. As assays are performed 
under additional conditions, as we refine our computational methods of analysis, we expect to 
discover many thousands more ncRNAs. The saturation plot for novel ncRNAs (left) illustrates 
this point. In each experimental condition, the total length of ncRNAs expressed was determined 
using a combination of experimental and computational methods. When multiple conditions are 
considered together, the total length of ncRNAs depends on the set of conditions involved. The 
saturation plot displays that total length (y-axis) at different number of conditions (x-axis). At 
each point along the x-axis, all possible combinations of conditions are considered, and the 
distribution of total lengths is summarized by a box plot. The black line shows the slope of the 
curve connecting the averages at the end of the curve. The steepness of the curve suggests that 
more ncRNAs are expected to be discovered if additional conditions are considered. We made 
the same saturation plot (on the right) for coding exonic regions. The detection of expressed 
exons tend to be saturated when additional experiments are added. 

Fig. S11: Number of stages and samples where a given gene or splice 
junction is observed 

Most genes and splice junctions are represented in all 19 stages and conditions, with smaller 
peaks for those found in only one or two stages and samples. The peak at 2 for stages per 
gene/splice junction in part results from the requirement that all novel splice junctions occur in at 
least two different stages (novel is defined as not a part of WormBase170 predictions, which 
included WormBase, Twinscan and Genefinder predictions). 

Fig. S12: Developmental stage-specific expression 

A. Expression profiles of developmental stage-specific genes. High and low expression levels 
(normalized DCPMs) are shown in red and blue, respectively. Expression levels of each gene are 
normalized across the 7 developmental stages by subtracting the mean then dividing the standard 
deviation. 
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B. Expression profiles of the meta-genes for developmental stage-specific transcripts. The 
expression level for a meta-gene was calculated by averaging the expression levels of all genes 
which are specific to a given developmental stage.   

C. Enrichment of promoter motifs. Enrichment of 24 EE-specific candidate motifs identified by 
the MEME algorithm in promoters of stage-specific genes. The –log(p-value) was calculated by 
comparing the occurrences of a motif in stage-specific transcripts relative to all the other 
transcripts, and then color-coded with red (indicating over-representation) or blue (indicating 
under-representation). 

Fig. S13: Lab batch effects 

Distribution of Values Along Principal Component 1 By Lab. No significant batch effect due to 
lab was found (p=.068, t-test) 

Fig. S14: Cumulative plot of isoform composition distribution 

This histogram shows the distribution of differences in isoform composition for all genes with 
multiple isoforms (12,875) in 21 pairwise comparisons across 7 developmental stages (EE, LE, 
L1, L2, L3, L4, YA). Isoform composition for gene i in stage S is represented by a vector !(i,S,k) 
where the kth component is the relative abundance of isoform k in relation to the other isoforms. 
Between two stages R and S for a given gene i the difference in abundance vectors gives a 
measure of the change in isoform usage for a gene. This is represented as D(i,R,S)  = 
"/k  ((!(i,R,k) - !(i,S,k))2)/k. The difference D is a fractional number between 0 and 1; scores 
close to 1 indicate dramatic differences in the relative composition of different isoforms of the 
gene. The histogram plots the distribution of D values for all genes i. It is averaged over all pairs 
of stages R and S. The error bars represent the range of number of genes in every histogram 
across the 21 pairwise comparisons. Overall, the histogram shows that most genes have minor 
differences in their isoforms, but a small fraction (280) have major and minor isoform switching 
between stages. (The minor isoform is defined as that with the lowest expression and account for 
less than 15% of the total expression of a given gene, while the major isoform account for more 
than 85% of total expression). This is a cumulative version of Fig. 1B.  

Fig. S15: SOM clusters of transcripts with different developmental 
expression profiles 

Application of a Self Organizing Map (SOM) algorithm to developmental transcript expression 
profiles for 15 stages resulted in 48 different SOM clusters across development. Individual 
transcript-level expression was calculated based on probabilistic inference using the deepseq9 
algorithm. The log2 value of probabilistic read counts from deepseq9 (y-axis) is plotted for each 
of 15 developmental stages (x-axis) arranged in the following order: MxE (male him-8), EE, LE, 
L1, L1 (lin-35), L2, L3, dauer entry, dauer, dauer exit, L4, L4 male, L4 soma, YA, and aged 
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adult (spe-9). All dauer stages are daf-2. Solid lines represent mean transcript expression in each 
of the 15 staged samples; dashed lines represent one standard deviation from the mean. (Data 
shown are for 15 discrete timepoints and do not represent a continuous change in expression 
across intermediate timepoints.)  

Fig. S16: Number of genes and transcripts shared between pairs of 
SOM clusters  

Adjacent to each cluster ID (c1..c48) is its size, indicated in terms of genes (yellow, g=XX) or 
transcripts (green, t=XX). Cells are shaded by the Pearson Correlation Coefficient (PCC) 
between developmental expression profiles for each pair of clusters, calculated from their mean 
expression across the 15 staged samples.  Values within cells indicate number of shared genes 
and transcripts in the yellow and green bounded regions, respectively.  

Fig. S17: Classes of distinguishing features between isoforms with 
different developmental expression profiles based on SOM clustering 

Shown are the numbers of alternative transcript pairs for the same gene that fall into different 
SOM clusters, for cases in which a single isoform falls into one SOM cluster and one or more 
alternative isoforms fall into another cluster (see text for details).  

Fig. S18: Examples of read count distributions supporting differential 
expression of alternative transcript isoforms among developmental 
stages 

Aggregate integrated transcript modelsfor genes with transcripts falling into different SOM 
clusters are displayed with wiggle plots from relevant stages using the Integrative Genomics 
Viewer (103). These plots represent 36-mer reads aligned without mismatch (trimmed up to 2 
bases) and were calculated by the SHRiMP aligner v1.3 (104). 

Forward and reverse primers used for qRT-PCR validation of transcripts shown in A and B are 
indicated with red and green arrows, respectively. The reverse primer for F26B1.2.T8 contains a 
3' poly-dT anchor.  
 
A. Unique 5' UTRs of T3 and T4 isoforms of C23H3.7. The T3 isoform is absent in young adult 
and is co-expressed with the T4 isoform in early embryo, but is not detected in young adult.. 

B. An alternative CDS exon is skipped in F26B1.2.T8 and included in F26B1.2.T9. The T9 
isoform is more highly expressed in L4 than L2.   

C. Overlapping 3' UTR of F28C6.3.T2 and F28C6.3.T4. The T4 isoform is expressed at a much 
higher level in L4 than in young adult. 
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Fig. S19: Breakdown on how the updated list of C. elegans 
pseudogenes was created 

The figure schematizes the workflow in updating the pseudogenes in WormBase, to arrive at 
current total of 1,293 pseudogenes. Pseudogenes came from two sources: those already in 
WormBase annotations (right) and those identified by Pseudopipe (left). The initial overlap of 
1,025 pseudogenes from these two sources was kept. The remaining subsets also kept are shown 
in red. These include 83 additional duplicated (DUP) and 90 additional processed (PSSD) 
pseudogenes identified by pseudopipe. They also include 95 pre-existing WormBase annotation 
not found by pseudopipe that were double-checked by the WormBase curators. 

Fig. S20: Binning of long TARs built from tiling arrays 

The TARs from tiling array data were built from the union of 41 samples (11). The minimum 
length of TAR is 100nt. Since long TARs could cover more than one type of sequence element, 
such as exons, introns, and UTRs, they were spliced into small windows of at most 150nt each, 
with adjacent windows having a 75nt overlap. Each bin was defined as intronic TAR, exonic 
TAR or UTR depending on which annotation it overlaps (WormBase170 was used). Those small 
TARs that are less than 150nt are not spliced. 

Fig. S21: Predicting ncRNAs 

A. The two panels illustrate the increased power achieved by combining features to discriminate 
between ncRNAs and other regions of the genome. These graphs show the distribution of 
expression feature values (e.g. from small RNA-seq) for genomic regions in the worm genome 
corresponding to ncRNAs and other types of sequence elements. The two panels show that while 
each feature alone cannot discriminate among different types of genomic elements, combining 
features into an integrated model can enable differentiation. The left panel shows the 
distributions of expression values for four representative features of the nine features examined 
using the gold-standard set of annotated regions (see (60) for the definition of the gold-standard 
set). The gold standard consists of four types of genomic elements: the known non-coding RNA, 
coding sequences (CDSs), untranslated regions (UTRs), and intergenic regions. A scatter plot of 
individual regions with values normalized to the same scale shows that the known ncRNAs are 
not readily distinguished from other regions, particularly using the bottom two features. At right, 
the maximum signal of polyA RNA on a tiling array is plotted in a two-dimensional scatter plot 
against predicted secondary structure conservation. Even using just two features, the ncRNAs 
begin to separate from the other regions. Expression values in the right panel are log-transformed 
normalized read counts (DCPM). Where multiple experimental data sets exist, the maximum 
value is used. The data used in the plots are from gold standard bins defined in (60). 

B. Example of a novel ncRNA with support from multiple sources of information in embryos. 
Track labels are PHA-4, HLH-1, RNA Pol II: ChIP-seq reads from the indicated protein, where 
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signal heights are normalized by their total mapped reads; H3K27ac (histone 3 lysine 27 
acetylation), H3K4me (H3K4 methylation): log-transformed values of the ChIP-chip data for 
two chromatin features normally associated with active genes; PolyA and Small RNA-seq: reads 
from polyA-selected and small RNA sequencing; Total RNA tiling arrays: log-transformed 
values of transcription on the tiling array in embryo; TARs: Transcriptionally Active Regions 
called from the tiling array signal track; Refseq: annotated genes in the region. The grey box at 
center shows a novel non-coding RNA ~160 nt in length captured only by the tiling array, 
indicating that it is not polyadenylated and is longer than the 30 nt size cutoff of the small RNA-
seq experiment. 

Fig. S22: TF binding around non-coding RNAs 

A. Enrichment of binding targets and signal of TFs in non-coding vs. coding genes. Max signal 
value represents the ratio of maximum binding signal of a TF around its target non-coding genes 
to that of its target coding genes. Target fraction represents the ratio of target percentage in non-
coding genes to that in coding genes. Only TFs present in the larval stage samples are shown. 
Some factors such as GEI-11 clearly bind more to ncRNA than others (e.g. PHA-4). 

B. An example showing GEI-11 binding near three ncRNAs. Four other factors (MAB-5, LIN-
39, EGL-27, and PES-1) are also shown as controls. The signal for each TF, as well as for Pol II 
and input, plots the ChIP-seq raw read counts scaled based on total mapped reads. Pol II and 
input samples were from N2 animals; TF samples were from animals expressing the factor 
tagged with GFP. The value of tiling array ChIP-chip signal for H3K27ac and H3K4me are also 
shown in green. Raw reads of polyA-plus RNA-seq and small RNA-seq, as well as expression 
(log2 of signal) from total RNA tiling array signal are also shown.  The ncRNA annotations and 
protein annotations are from Refseq (105). 

C. Average ChIP-seq signal around the transcript start site (TSS) of target coding (red) and non-
coding (blue) transcripts for four representative TFs. The signal is the normalized mapped reads 
over input at each position (window size is 100nt). 

Fig. S23: Co-occurrence of transcription factors 

Co-occurrence is counted if two TFs bind to the promoter region of the same gene (2000 bp 
upstream to 300bp downstream of TSS), without considering the strength of binding. Genes 
targeted by HOT regions were removed before calculating the co-occurrence. The heat map 
reflects the co-bound correlation of each pair of TFs at targeted gene loci, with red indicating 
more co-bound genes than would be expected by chance and blue, indicating less. TFs have been 
clustered along both axes based on the similarity of their bound targets with other factors. The 
same stage is annotated with the same color. The HOX genes are highlighted with orange color. 

A. Co-occupancy of transcription factor pairs at targeted coding genes. 
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B. Co-occupancy of transcription factor pairs at targeted miRNAs. 

Fig. S24: Comparison of PeakSeq and PeakRanger peak calls 

The PeakRanger algorithm refines the PeakSeq peak calling package by identifying narrow, 
highly specific summit peaks within the broad regions called by PeakSeq. This figure illustrates 
PeakRanger's performance across a representative 12 kb region of chromosome I from a PHA-4 
early embryo ChIP-seq experiment. From the top, the tracks are: (1) ChIP-seq signal graph; (2) 
PeakRanger-identified summits; (3) PeakRanger summits extended 100 bp in each direction; (4) 
Broad regions captured by unmodified PeakSeq algorithm. 

Fig. S25: Distribution of TF binding 

A. Many regions show overlap of ChIP-seq binding sites for 23 transcription factors. Red 
indicates the number of regions bound by 1 to 23 TFs in ChIP-seq data. There are 16,707 
genomic regions bound by at least 1 TF, and 304 regions bound by at least 15 factors. Black 
indicates the average number of regions bound in 1,000 randomized controls, with error bars 
indicating standard deviation. In randomized controls, an average of less than 1 region was 
bound by 12 or more factors, and no regions bound by 15 or more factors were observed. 

B. HOT region definitions are largely insensitive to peak width. The 304 HOT regions were 
initially defined using broad PeakSeq peak calls (~400 nt wide). To define narrower peaks, peak 
summits  were identified using the PeakRanger algorithm (described in SOM), and narrower 
peaks were defined as the region 200, 150, 100, 50, and 26nt wide centered around a peak 
summit. Using identical methods as previously used to identify regions of overlap between 
factors, we determined the percent of HOT regions that remained bound by 15 or more TFs using 
the narrower peak regions, as indicated by the bar heights. More than 80% of HOT regions 
remained HOT when 100-nt wide peaks were used. 

Fig. S26: Control experiments for HOT regions 

A. The x-axis plots the percentage of the 304 HOT regions which are significantly enriched in 
the various ChIP-seq controls. In order to verify that the antibodies used do not bind non-
specifically to GFP-tagged proteins, IgG negative control experiments were performed in two 
different transgenic C. elegans lines expressing LIN-15B::GFP or EGL-27::GFP. In order to 
verify that GFP-specific antibody does not pull down any other proteins in C. elegans, GFP 
antibody negative controls were performed in wild-type animals at embryonic and L3 stages. As 
a positive control, LIN-15B antibody was used in wild-type N2 animals to immunoprecipitate 
endogenous LIN-15B. 

B. DPY-27 only binds to HOT regions on the X chromosome. The y-axis shows the number of 
HOT regions found on each chromosome. The set of all 304 HOT regions and the 298 HOT 
regions that are bound by LIN-15B are evenly distributed across all 6 chromosomes (with 
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chromosomes separated by color). In contrast, all 29 HOT regions bound by DPY-27 are on the 
X chromosome. DPY-27 regulates gene expression specifically on the X chromosome for dosage 
compensation (68) 

Fig. S27: HOT regions enrichments 

A. (Left) HOT regions containing HLH-1 binding show a relative lack of HLH-1 binding motifs. 
In black, the frequency of the in vitro HLH-1 binding motif (hexamer CAGCTG) is greater in 
HLH-1 factor-specific regions than in HLH-1 binding sites within HOT regions. The sequences 
in HLH-1 peak regions were randomized using the Fisher-Yates shuffling algorithm, and motif 
density was calculated for these shuffled regions (grey bar, error bars indicate standard 
deviation). 598 HLH-1 factor-specific targets are defined as regions with 1-4 factors (including 
HLH-1); 165 HOT regions are bound by 15 or more factors (requiring inclusion of HLH-1). 
(Right) HLH-1 binding does not correlate with muscle expression in HOT regions. Genes 
associated with factor-specific peaks for HLH-1, a muscle-specific TF, are over 7-fold more 
likely to be muscle-specific genes (69, 106) than genes located near HLH-1-containing HOT 
regions. For each dataset, the frequency of muscle-specific genes is shown in black, and the 
frequency in random gene sets of equal size is shown in grey (error bars indicate standard 
deviation). 

B. Factor-specific and HOT regions are different in motif frequency and tissue-specificity. Bars 
show enrichment for motif density or tissue-specific genes between factor-specific and HOT 
targets for the TF. * indicates P<0.01 and ** indicates P<0.0001 by Fisher’s exact test. For four 
factors (HLH-1, ELT-3, MDL-1, and PHA-4) with published sequence binding motifs, factor-
specific regions are significantly enriched for the frequency of motifs as compared to HOT 
regions. Factor-specific targets compared to HOT targets are enriched for genes with tissue-
specific expression patterns. L1 muscle-specific and L4 intestine-specific genes were obtained 
from previous studies; embryonic tissue-specific genes for body wall muscle (b.w.m.), intestine, 
and hypodermis were identified from embryonic tissue-specific tiling arrays. Shown are all TFs 
for which factor-specific peaks were significantly enriched (> 2.5 fold-enrichment and  P<10e-5) 
for a set of tissue-specific genes when compared to all WormBase genes. 

C. Genes near HOT regions are enriched for essential function. Genes were separated based upon 
the presence of ChIP-seq peaks within 1kb of the TSS. The y-axis shows the percent of genes 
bound only by 1-4 factors (“specific targets”) or genes bound by 15 or more factors (“HOT 
regions”) that serve essential functions, as indicated by RNAi knockdown. The dotted line 
signifies the percentage of all genes that are essential. By Chi-square test, genes nearby HOT 
regions are significantly more likely to be essential (9-fold; P < 10e-40), whereas genes that only 
had specific peaks were not.  

Fig. S28: Higher gene expression level in HOT regions  
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A. Higher gene expression level in HOT regions detected by RNA-seq. Genes adjacent to HOT 
regions have significantly (P < 10e-30 by Kolmogorov-Smirnov test) higher expression in late 
embryonic (LE) animals than do genes located near just 1-4 bound factors. In red, expression 
level of genes with a HOT region within 1kb upstream or 500nt downstream of the TSS; in blue, 
expression level of genes proximal only to regions bound by 1-4 factors. The histogram plots the 
frequency (y-axis) of genes with the listed RNA-seq expression levels in late embryonic animals 
(x-axis, measured as log10(depth of coverage per million reads)). 

B. Higher gene expression level in HOT regions in tiling arrays. Genes adjacent to HOT regions 
have higher expression levels in tissue-enriched tiling arrays across all tissues assayed. In red, 
expression level of genes with a HOT region within 1kb upstream or 500nt downstream of the 
transcription start site; in blue, expression level of genes proximal only to regions bound by 1-4 
factors. The histogram plots the median of normalized gene expression measurements (y-axis) of 
genes on the listed tiling array experiment (x-axis), with error bars indicating standard error of 
the mean. Data is further described in (21). For embryonic experiments (left), tissue-specific 
gene expression measurements were obtained from tiling arrays performed on FACS sorted cells 
expressing a tissue-specific GFP label. For post-embryonic experiments (right), gene expression 
measurements were obtained from tiling arrays performed on samples that were tissue-enriched 
using the mRNA tagging method. In all experiments shown, genes adjacent to HOT regions are 
significantly shifted towards higher expression (P < 10e-15 by Kolmogorov-Smirnov test). 

C. HOT genes are highly and ubiquitously expressed across tissues and developmental stages. 
HOT genes are identified as those with at least one HOT regions in their promoter region 
(from1kb upstream to 500bp downstream of TSS). HOT regions are defined as those  bound by 
at least k TFs (k=1, 2, ...20). k=0 corresponds to the whole set of genes. Stage specificity score 
and tissue specificity score are calculated as described in SOM D.3.  

Fig. S29: HOT regions are broadly expressed 

Single-cell gene expression measurement of promoter transcriptional reporter constructs in L1 
animals from 3D confocal data stacks (data from (107)). The x-axis represents 363 specific cells 
present in the L1 stage, and the y-axis shows expression of 93 mCherry reporters, with the 
expression level of the mCherry reporter shown by the red scale bar. Promoters containing HOT 
regions (bound by 15 or more factors), and even promoters containing regions bound by 10-14 
factors, show broad expression across 363 cells in the L1 stage, whereas promoters lacking these 
regions show a variety of diverse tissue-specific expression patterns. Data is presented 
identically to Fig. 3C, and gene names are provided in addition to row label codes from Fig. 3C. 

Fig. S30: Pair-wise correlations of PHA-4 binding signal across 
different stages 
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The union of all PHA-4 binding sites were merged together and then binned into 100nt windows. 
The raw reads of ChIP-seq data for each window were calculated and normalized over the 
respective input for each ChIP-seq experiment. The correlation coefficient of each pair of stages 
was then calculated. HOT regions were removed before merging the binding sites. 

Fig. S31: Examples of Pol II binding and expression   

Heatmap showing percentage of RNA Pol II binding and expression for isl-1 and pgp-2 and 
C15F1.2, during seven stages of the C. elegans life cycle. For each transcript, RNA Pol II 
binding levels and gene expression levels increase in concert until the stage where both reach 
maximum levels.  In the following stages, the expression levels tend to drop at a faster rate than 
RNA Pol II binding.  These examples illustrate one scenario in which a change in gene 
expression in earlier stages can be predictive of a similar change in RNA Pol II binding levels 
during later stages. The heatmap is normalized independently along the columns, with the values 
representing the ratio of signal in a stage to the maximum signal observed. 

Fig. S32: Histone marks distribution over repetitive elements 

Five repetitive element classes were extracted from WormBase190. The region of the genome 
underneath each element was subdivided into 10 equal sized bins centered on the element. In 
addition, the 1 kb regions flanking each element were subdivided into an additional 20 100 bp 
bins. The mean z-scores for ChIP-chip chromatin marks from L3 larvae were then graphed 
across each bin. The histone marks from top to bottom are: H3K27ac, H3K36me2, H3K36me3, 
H3K4me2, H3K4me3, H3K27me3, H3K9me1, H3K9me2 and H3K9me3. 

Fig. S33: Promoters of chromosome X genes have higher GC content 
compared to autosomes 

A. Average GC content is plotted for chromosome X and autosomal genes centered at their 
transcription start sites(GC content is calculated within 25 bp upstream and downstream of each 
coordinate). A region between -250 to -50 shows a spike in GC content on chromsome X. 

B. Distribution of average GC content within this region is plotted. Chromosome X gene 
promoters have significantly higher GC content, as determined by a Wilcoxon rank sum test (P 
<2.2e-16). 

Fig. S34: Histone marks aggregation around TSSs and TTSs 

Average gene profiles around the TSS and TTS of various histone marks displayed for the X 
chromosome (red), and autosomes (blue). Genes were further stratified according to their 
expression level, with the top 20% of expressed genes shown in darker shade, and the bottom 
20% of expressed genes shown in lighter color. The top two panels show that histone variant 
H3.3 marks regions of active chromatin on both autosomes and the X chromosome.  Marks 
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typically associated with active or repressed transcription are labeled on the left. Plots from L3 
stage animals (bottom row), highlight some of the differences in histone mark patterns between 
the EE and L3 stages. For example, H3K27me1 and H3K27me3 show stronger enrichment of 
expressed genes on the X in EE, whereas H4K20me1 is more strongly enriched on the X in L3. 

Fig. S35: TF sequence motif discovery 

A. Recovered motifs. Transcription factor ChIP-seq peak data sets were searched for enriched 
motifs as described in the text . Of the 23 data sets analyzed, enriched motifs were found in 22; 
however, only 8 transcription factors showed sufficient specificity to be accepted (see panels B 
and C for example).  We additionally found three motifs significantly enriched in HOT regions, 
the first of which is partially identical to a SLR-2-reponsive motif found in wormbase.  

1- Also enriched in HOT regions. The fact that the CEH-14 motif is enriched in HOT regions 
either means that this TF binds specifically to HOT regions, or that this TF has a weak motif and 
that the observed motif is derived from another protein co-binding in HOT regions. Additional 
experiments will be necessary to decide between these two cases. 

2- Consistent with a previously published motif for the given TF. 

B. Example motif distribution analysis (BLMP-1)- Distribution of BLMP-1 motif 
“TTTCACTTT” was plotted relative to SPP-point-binding positions (single-base-pair genomic 
coordinates with highest likelihood for binding (63)) for BLMP-1. The motif occurrence 
distribution is Gaussian-like around BLMP-1 point binding positions  (black and yellow lines) 
while relatively evenly distributed over random upstream regions (red line). Black indicates high 
confidence peaks with SPP assigned FDR <0.01. Yellow indicates low confidence peaks with 
SPP assigned FDR >0.01 and <0.05. Red indicates random upstream regions. 

C. Example motif density analysis for BLMP-1. 200 base pairs flanking point binding positions 
for BLMP-1 were analyzed for density of BLMP-1 motif “TTTCACTTT” in occurrences per 
base pair. BLMP-1 peaks have significantly higher occurrences of the motif than any other 
transcription factor. Random upstream regions and HOT regions were also analyzed on a motif-
per-nucleotide scale and similarly show much lower motif density than what is found in BLMP-1 
peaks. 

Fig. S36: TFs in the larval network 

Names of the TFs in the network in Fig. 4C. 

Fig. S37: Network motifs 

Three over-represented motifs in the integrated miRNA-TF network in Fig. 4A: TF (triangle), 
miRNA (circle), target gene (square). P-values are calculated based on an ensemble of rewired 
networks. 
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Fig. S38: TF binding and chromatin features 

A. Correlations between whole-genome transcription factor binding signals and chromatin 
features. The Pearson correlation between the signals from each of the 27 transcription factor 
ChIP-seq experiments (rows) and 22 chromatin features (columns) across the whole genome are 
shown in a heatmap. 

B. Modeling accuracy of models involving either all features or individual features. Each column 
corresponds to the feature(s) (experiments and stages) involved in constructing statistical models 
for either the binding peaks of the transcription factors or the HOT regions (represented by the 
rows). 

Fig. S39: Machine learning procedure for modeling TF binding peaks 

The C. elegans genome was divided into bins of 100 bp. Histone methylation and binding signals 
of RNA Pol II were used as features to distinguish bins which intersect with the binding peaks 
from those which do not, using the machine learning method support vector machines (SVMs). 
Models were learned from the training portion of the data sets and evaluated on a separate testing 
portion. 

Fig. S40: TF binding model accuracy 

A. Modeling accuracy of integrative models. Each curve represents the accuracy of an 
integrative model involving all features together used to predict either the binding peaks from a 
TF binding experiment or HOT regions from the genomic background.  See the caption for Fig. 
S39B for the learning procedure. The accuracy of the models is represented here by receiver-
operator-characteristic (ROC) curves.  

The whole genome was divided into bins of 100bp in size. Bins within the binding peaks of 
specific TF (or within the HOT regions) were defined as the positive examples, and an equal 
number of other bins were randomly sampled from the whole genome as the negative examples. 
These examples were used to train and test machine learning models using cross-validation. The 
number in each cell corresponds to the accuracy of the model, measured by the area under the 
receiver-operator-characteristic (ROC) curve, AUROC. The receiver operator characteristic is a 
plot of true positive rate against false positive rate for a set of ranked predictions. If all the 
ground truth positives are ranked higher than the ground true negatives, the curve goes from the 
origin vertically up to the point (0, 1), and then horizontally to (1, 1). In this case, the area under 
the curve has the maximum value of 1. If all the ground truth negatives are ranked higher than 
the ground true positives, the area under the curve has the minimum value of 0. A random 
ranking has an expected area under the curve of 0.5. In general, a larger area under the curve 
indicates a higher consistency between the predictions and the ground truth. 
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B. Distinguishing binding peaks of different TFs. Each bar shows the accuracy with which a 
model distinguishes the binding bins of a TF experiment from random binding bins of other TF 
experiments (instead of the genomic background as in part A). The last column shows that the 
HOT regions can be accurately separated from other TF binding sites using the chromatin 
features.  

Fig. S41:Average signals of some chromatin marks at the binding-
peaks and non-binding-peaks of TFs 

Each panel shows the average signal of a chromatin mark at the binding-peaks and non-binding-
peaks of each TF-binding dataset. H3K4me2 and H3K4me3 are enriched in TF-binding peaks as 
compared to non-peaks, while H3K9me3 are depleted. Among the TFs, H3K4me2 and 
H3K4me3 are in general more enriched at the peaks of CEH-14, CEH-30, LIN-13, LIN-15B and 
MEP-1 as compared to the other TFs. 

Fig. S42: Developmental stage-specific models 

The accuracy of models specific for individual developmental stages (involving predictors only 
from that stage) are shown. For each TF, the heights of the three bars correspond to the 
accuracies of the models for distinguishing binding peaks of different TFs, involving predictors 
measured in (from left to right) embryos only, L3 only, and both stages. Notice that the results 
for the last case were also shown in Fig. S40.) 

Fig. S43: Combination of chromatin and sequence features 

Potential binding sites of HLH-1 were identified by using two known sequence motifs in Jaspar 
(108). Chromatin features were used to model general binding active regions (BAR+) which are 
not specific to any DNA-binding proteins. The prediction model assigns a probability value for 
each region to indicate its likelihood of being in BAR+. By varying the probability threshold, 
different sets of BAR+ regions were identified. At each threshold, three sets of regions were 
compared: all general binding active regions (BAR+), all regions with high motif scores 
(PWM+), and binding active regions with high motif scores (BAR+PWM+).PPV represents the 
fraction of true positives in all positive predictions by the model. 

Fig. S44: Coverage of evolutionarily constrained regions by genomic 
features 

From the six-way alignment of C. elegans, C. briggsae, C. brenneri, C. japonica, and 
P. pacificus, we identified the portion of the genome under evolutionary constraint as described 
in the SOM. From this, we calculated the overlap with pre- and post-modENCODE functional 
elements in order to determine the proportion of constrained regions that can be explained by 
known classes of functional elements. Bars indicate the coverage of the whole and constrained 
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genome by individual element classes with darker colors indicating the proportion of the class 
that overlaps with previous classes and lighter colors indicating the proportion uniquely 
contributing to coverage. The lines indicate cumulative coverage. Red and orange bars and lines 
correspond to coverage of the entire genome, while blue and light blue corresponds to coverage 
of the constrained 29.6% of the genome. 

Element sets are as follows: WB CDS: WormBase coding exons from release WS190 that are 
completely confirmed by cDNA and EST evidence (see Table S14); WB 5’ UTR, WB 3’ UTR: 
WormBase UTRs from the same release; WB partially confirmed CDS: WormBase coding exons 
that are partially confirmed by overlapping cDNA and ESTs; ME CDS: coding exons that are 
fully supported by transcriptome sequencing data generated by modENCODE; ME 5’ UTRs, ME 
3’ UTRs: UTRs that are supported by modENCODE transcriptome sequencing; WB predicted 
CDS: unconfirmed coding exons from WormBase called by ab initio gene prediction algorithms 
(added to the cumulative plot after the confirmed gene elements to show the small additional 
contribution that predicted exons make to coverage); ncRNA: modENCODE nonfadingRNA 
annotations; Pseudogene: modENCODE pseudogene annotations; TF binding sites: 
modENCODE binding sites for 23 transcription factors; Chromatin associated proteins: the 
union of modENCODE binding site peaks for the chromatin associated proteins HCP-3, LEM-2, 
MES-4 and HRG-1; Dosage compensation factors: the union of modENCODE binding site 
peaks for DPY-27, DPY-28, MIX-1, SDC-2 and SDC-3. 

Fig. S45: Conservation enrichment analysis 

Expanded version of Fig. 8 comparing spectral enrichment and overall enrichment of 12 datasets. 

Datasets for A “CDS, UTR and ncRNA regions”. ncRNA: non coding RNAs identified by 
modENCODE; miRNA: microRNAs identified by modENCODE; 5' UTR, 3' UTR: WormBase 
5'- and 3'-UTRs confirmed by EST alignments; CDS: All modENCODE validated coding 
regions. 

Datasets for B “chromatin interacting protein sites”. Dosage compensation: the union of 
binding site peaks for the factors DPY-27, DPY-28, MIX-1, SDC-2 and SDC-3. TF binding 
sites: Transcription factor (TF) binding sites identified by modENCODE.  The union of the 
binding sites from the following experiments were counted as transcription factor binding sites: 
ALR1 L2, BLMP L1, CEH14 L2, CEH30 LE, EGL5 L3, EGL27 L1, ELT3 L1, EOR1 L3, 
GEI11 L4, HLH1 EMB, LIN11 L2, LIN13 EMB, LIN15B L3, LIN39 L3, MAB5 L3, MDL1 L1, 
MEP1 EMB, PES1 L4, PHA4 EMB, PHA4 L1, PHA4 L2, PHA4 LE, PHA4 stvL1, PHA4 YA, 
PQM1 L3, SKN1 L1, and UNC130 L1. HOT: ChIP target regions occupied by at least 15 TFs. 
The most stringent definition of HOT region was applied here, counting only those bases with at 
least 15x overlap from peaks from TF group, while for PHA4 only peaks from L2 were 
considered. Remaining chromatin interacting protein sites: the union of binding site peaks for 
the factors HCP-3, LEM-2, MES-4 and MRG-1 . 
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Datasets for C “introns, pseudogenes and unannotated regions”. pseudogenes: 
modENCODE pseudogenes annotations; introns: modENCODE intron annotations. Unannoated 
regions: All genomic regions not covered by any of the preceding datasets from A, B, or C. 

Spectral plots show enrichment relative to constrained bases in non-CDS portion of the genome. 
Points above and below the dotted horizontal line are enriched and depleted, respectively, 
relative to expectation drawn from a random distribution of similar size fragments from the non-
CDS portion of the genome. The inset column bars show overall enrichment relative to entire 
genome. Only peaks that did not overlap CDS, UTR and ncRNA regions were considered, so as 
to remove any artificial conservation artifact due to the background conservation of such 
elements. For the analysis of introns we similarly excluded introns that overlap a CDS or UTR 
on the opposite strand. 

Fig. S46: PhastCons score correlation with peak centers in 
modENCODE peak calls 

Aggregate conservation scores for peaks from three representative transcription factors, LIN-
15B, HLH-1 and ALR-1. PhastCons conservation scores increase towards the center of called 
peaks and reach their maximum near peak centers identified by PeakRanger. 

Fig. S47: Saturation of TF binding 

Saturation of the binding sites of 23 C. elegans transcription factors (including 6 stages for PHA-
4) over the WS190 genome with coding sequence bases and Pol II binding site bases removed. 
No more than 5% of the bases are covered by these factors. These experiments include: ALR-1 
L2, BLMP-1 L1, CEH-14 L2, CEH-30 LE, DPY2-7 EMB, EGL-5 L3, EGL-27 L1, ELT-3 L1, 
EOR-1 L3, GEI-11 L4, HLH-1 EMB, LIN-11 L2, LIN-13 EMB, LIN-15B L3, LIN-39 L3, 
MAB-5 L3, MDL-1 L1, MEP-1 EMB, PES-1 L4, PHA-4 EMB, PHA-4 L1, PHA-4 L2, PHA-4 
LE, PHA-4 stvL1, PHA-4 YA, PQM-1 L3, SKN-1 L1, and UNC-130 L1. 

Fig. S48: Comparison of coverage between ENCODE pilot and 
modENCODE C. elegans project 

The upper panel illustrates the distribution of evolutionary constrained bases in the human 
ENCODE pilot, while the lower panel illustrates the distribution in modENCODE. The pie 
charts demonstrate the relative proportion of constrained and unconstrained bases according to 
the definitions used in this paper and the ENCODE pilot, while the stacked column chart shows 
the coverage of the constrained bases among various classes of annotation. While the number of 
bases annotated by the C. elegans modENCODE project is considerably higher than the 
ENCODE project, owing to the fact that the modENCODE projects target whole organism 
genomes while the ENCODE pilot focused on 1% of the human genome, the percentage of 
experimental annotations added by each are very similar. The percentage of regions that remain 
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unannotated is much smaller in C. elegans owing primarily to the fact that more dense coding 
regions were found in worm relative to human. 

Fig. S49:  RNAPII ChIP-seq signal aggregation in human and 
C. elegans 

Aggregation of RNA polymerase II (RNAPII) ChIP-seq signal over TSSs for H. sapiens (HeLa 
cells, (61)) and C. elegans (L4).  Annotation sources used were CCDS genes (H. sapiens, (96)) 
and wormbase build ws180 (C. elegans, (97)). Signals were scaled to share the same maximum 
height and show that RNAPII signals exhibit similar profiles between organisms. 

Fig. S50: Comparison of histone marks in C. elegans early embryos 
and human CD4T cells  

Average gene profiles around the TSS and TTS of RefSeq genes are shown for human CD4+T 
cell ChIP-seq data of various histone marks (98). The top 20% expressed genes are shown in 
dark red, the bottom 20% genes are shown in light red. The ChIP-seq data were processed as 
described in (99)  
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Supplementary Tables  
Table S1a: Data overview for RNA sequencing and expression tiling arrays 

 

modENCODE Transcriptome Experiments 

PolyA selected RNA-seq Small RNA-selected RNA-
seq 3' UTR-selected RNA-seq Expression 

Tiling Arrays 
Stage/Condition 

Substages / 
Subconditions 

Reads 
(Millions) 

Substages / 
Subconditions 

Reads 
(Millions) 

Substages / 
Subconditions 

Reads 
(Millions) 

Substages / 
Subconditions 

Embryo 2 139 8 51 1 0.5 3 
L1 2 111 1 10 1 0.2 1 
L2 1 33 1 10 1 0.4 1 
L3 1 29 1 9 1 0.2 1 
L4 2 78 1 9 1 0.3 3 

Adult herm. 4 195 10 106 1 0.1 4 
Male 2 60 1 12 1 0.2 1 

Dauer 3 89     4 0.2   
Mixed stage     1 5 3 11   

Isolated Tissues     4 16     26 
Infected 

Organisms 2 97         4 
Total 19 831 28 228 14 13.1 44 

This is an overview of the raw experimental data present in the February 2010 data freeze from the transcription 
analysis portion of the project. Developmental substages, isolated tissues, and several mutant strains have been 
collapsed into single columns; the counts in each "Substages/Subconditions" column give the numbers of substages, 
tissues and/or mutant strains examined. The background strain is N2, unless otherwise noted. Substages include: 
Embryo: early embryo, late embryo, mixed-stage embryo, one-cell stage embryo, post-gastrulation embryo, two-to-
four cell embryo; L1: N2, lin-35; L4: hermaphrodite, JK1107 soma, L3-L4; Dauer: daf-2 dauer larva (entry, mid, exit), 
daf-3, daf-7, daf-9, daf-11; Adult hermaphrodite: adult (includes controls for pathogen assays), young adult, spe-9 
adult (0, 5, 8, 12 days), JK1107 soma, L4-YA; Male: him-8 embryo, dpy28(y1);him-8(e1489) L4 male, him-8 adult 
male; Isolated tissues: GABA neurons, A-class motor neurons, AVA neurons, body wall muscle, coelomocytes, 
dopaminergic neurons, GABA motor neurons, germline precursor, hypodermal cells, intestine, panneural, BAG 
neurons, pharyngeal muscle, PVC neurons, excretory cell, glutamate receptor neurons, PVD & OLL neurons, cephalic 
sheath cells (CEPsh), spermatids, oocytes, gonad; Infected Organisms (3 pathogens): E. faecalis, P. luminscens, S. 
marcescens. "PolyA selected RNA-seq" refers to RNA sequencing of polyA-selected libraries. "3' UTR-selected 
RNA-seq" refers to 3'-RACE and other experimental strategies designed to sequence the 3' ends of transcribed genes. 
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Table S1b: ChIP-chip, ChIP-seq, and other chromatin-characterization experiments 
 

Transcription Factor ChIP-Seq 
Transcription 

Factor 
Early 

Embryo 
Mixed 

Embryo 
Late 

Embryo L1 L2 L3 L4 Young 
Adult Other 

HLH-1  X               
LIN-13  X               
MEP-1  X               

PHA-4  X X X X     X 
Starved 

L1 
CEH-30     X             
BLMP-1       X           
EGL-27       X           

ELT-3       X           
MDL-1       X           
SKN-1       X           

UNC-130       X           
ALR-1         X         

CEH-14         X         
LIN-11         X         
EGL-5           X       
EOR-1           X       

LIN-15B           X       
LIN-39           X       
MAB-5           X       
PQM-1           X       
GEI-11             X     

PES-1             X     
POL-II X   X X X X X X   

                    
Chromatin Modification ChIP-chip  

Modification Early 
Embryo 

Mixed 
Embryo 

Late 
Embryo L1 L2 L3 L4 Young 

Adult Other 

H3K27Ac X         X       

H3K27me3           X       

H3K36me1 X         X       

H3K36me2 X         X       
H3K36me3 X         X       

H3K4me1 X         X       

H3K4me2 X         X       
H3K4me3 X         X       

H3K79me1 X         X       

H3K79me2 X         X       
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H3K79me3 X         X       
H3K9Ac X         X       

H3K9me1 X         X       

H3K9me2 X         X       

H3K9me3 X         X       
H3K20me1 X         X       
H4tetraAc X                 

H4K8Ac           X       
                    

Chromatin-Associated Proteins ChIP-chip 

 Factor Early 
Embryo 

Mixed 
Embryo 

Late 
Embryo L1 L2 L3 L4 Young 

Adult Other 

CBP-1   X               
DPY-26   X               
DPY-27 X X         X     
DPY-28   X               

H3 X                 
H4           X       

HCP-3 X X               
HTZ-1  X               
LEM-2   X               
MES-4 X                 
MIX-1   X               

MRG-1 X                 
NPP-13   X               
POL-II X X         X     
SDC-2   X               
SDC-3   X               

Chromatin salt 
fractionation   X               

Nucleosomes 
(MNase-seq) X X           X 

glp-1 
adults, 
fem-2 
adults 

This is an overview of the raw experimental data present in the February 2010 data freeze from the 
transcription factor and chromatin-structure aspects of the project. All transcription factors were analyzed 
in replicate by ChIP-seq. All chromatin modifications and chromatin-associated proteins were analyzed 
by ChIP-chip, with the exception of DPY-27, which was analyzed by ChIP-seq as well as ChIP-chip. All 
experiments were performed on N2, unless noted in the "Other" column. 
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Table S1c: Inferred genomic elements 
 

Inferred Genomic Elements 
Representative Developmental Stages 

Element Embryo L1 L2 L3 L4 Young 
Adult 

Coding 
transcripts 35,097 35,568 32,027 34,216 34,471 33,999 

TSSs 14,854 16,257 14,411 14,004 10,949 13,960 
TARs 39,328 42,421 41,791 41,734 43,380 40,624 

miRNAs 152 127 126 130 133 133 
other ncRNAs 895 936 981 781 823 859 

TF Peaks (# 
factors) 17,147 (5) 26,944 (7) 8,060 (4) 16,149 (6) 3,749 (2) 551 (1) 

Here we summarize genomic elements that have been inferred for each major element type 
across the developmental series. For simplicity, we have chosen a single representative 
subcondition for each stage. Embryo: early N2 embryo for all experiments except for the 
miRNA and other ncRNA experiments, which were performed on mixed embryonic stages 
from N2; L1-L4: L1 through L4 larva in the N2 strain; YA: Young adult N2 hermaphrodites 
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Table S2a: Sources of polyA sites in final integrated transcript set  

Data source(s)* proximal** distal total 
3P-only 3570 4610 8180 
3P+Mangone 2680 6291 8971 
3P+Mangone+RNAseq 1676 4181 5857 
3P+Mangone+RNAseq+Wb 273 534 807 
3P+Mangone+Wb 97 358 455 
3P+RNAseq 199 311 510 
3P+RNAseq+Wb 13 22 35 
3P+Wb 7 26 33 
Mangone-only 3847 1794 5641 
Mangone+RNA-seq 43 12 55 
Mangone+Wb 10 22 32 
RNA-seq-only 46 93 139 
Wb-only 9 13 22 
*3P = 3P-Seq from Jan et al. (15)   
  Mangone = Mangone et al. (17) 
  RNA-seq = those polyAs identified by this project 
  Wb = WormBase (WB170) 
**proximal = a polyA site in a terminal exon that is not the most distal polyA site in the exon 
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Table S2b: C. elegans genes not identified as “transcribed” in 19 polyA RNA-seq 
samples 

Type Genome total Not covered % not found 

nuclear hormone receptors 85 21 24.7 

7TM/G-protein coupled receptor 1454 323 22.2 
math-(meprin-associated Traf 
homology) 62 9 14.5 

F-box 238 12 5 

Zinc Finger 236 4 1.7 
Stages and strains of worm RNA (polyA) sequenced include: embryonic him-8(e1489) (50% 
males), early embryos, late embryos, L1 lin-35(n1745), L1, L2, L3 dauer entry daf-
2(e1370), dauer daf-2(e1370), dauer exit daf-2(e1370), L4, L4 males, JK1107 L4 (no 
gonad) glp-1(q224),  young adults, aged adults (spe-9(hc88 )), adults exposed to 
Harposporium spp (tentative assignment), and adults exposed to S. marcescens. 
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Table S3: Developmental stages and tissue samples of small RNA-seq and tiling array 
experiments.  

RNA-seq and Tiling Array Samples RNA-seq abbreviations  
  
Developmental stages for small RNA-seq experiments  
Young adult males (23dC)  
Mixed Embryo  
mid-L1 20dC 4hrs post-L1 stage larvae  
mid-L2 20dC 14hrs post-L1 stage larvae  
mid-L3 20dC 25 hrs post-L1 stage larvae  
mid-L4 20dC 36hrs post-L1 stage larvae  
Young adult 20dC 48hrs post-L1 stage larvae  
Young adult (23dC DAY 0 post-L4 molt)  
Adult 23dC 12 days post-L4 stage larvae  
Adult 23dC 5 days post-L4 stage larvae  
Adult spe-9(hc88) 23dC 8 days post-L4 molt  
  
Specific tissues for tiling array experiments   
embryo A-class motor neurons  
embryo AVA neurons  
embryo body wall muscle  (v2)  
embryo coelomocytes  
embryo dopaminergic neurons  
embryo GABA motor neurons  
embryo germline precursor cells  
embryo hypodermal cells  
embryo intestine  
embryo panneural  
L2 A-class neuron  
L2 body wall muscle  
L2 coelomocytes  
L2 excretory cell  
L2 GABA neurons  
L2 glutamate receptor expressing neurons  
L2 intestine  
L2 panneural  
L3-L4 dopaminergic neuron   
L3-L4 hypodermal cells   
L3-L4 PVD & OLL neurons   
Young Adult Cephalic sheath (CEPsh)   
embryo BAG neurons*    
embryo PVC neurons*    
embryo pharyngeal muscle*    
  
Controls for tissue specific tiling array experiments   
embryo all cells reference  
L2 reference (mockIP)  
L3-L4 reference (mockIP)   
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Young Adult reference (mockIP)   
  
Developmental stages of tiling array experiments   
early embryo 20dC 0-4hrs post-fertilization*  EE 
late embryo 20dC 6-12hrs post-fertilization N2  LE 
L2 polyA enriched 20dC 14hrs post-L1 N2  
L1 20dC 0hrs post-L1 N2   L1 
L2 25dC 14hrs post-L1 N2 L2 
L3 25dC 25hrs post-L1 N2   L3 
L4 25dC 36hrs post-L1 N2   L4 
young adult 25dC 42hrs post-L1 N2  YA 
male L4 25dC 36hrs post-L1 CB4689   L4 male 
gonad from young adult 20dC 42hrs post-L1 N2  
soma-only mid-L4 25dC 36hrs post-L1 JK1107   L4 soma 
pathogen S marcescens 25dC 24hr exposure post-adulthood  Sm 
pathogen S marcescens 25dC 48hr exposure post-adulthood   
pathogen E faecalis 25dC 24hr exposure post-adulthood   
non-pathogen control 25dC 24hr exposure post-adulthood  Sm ctrl 
non-pathogen control 25dC 48hr exposure post-adulthood   
pathogen P luminscens 25dC 24hr exposure post-adulthood   
  
Other samples not included above used for RNA-seq experiments 
mixed embryo (him-8) MxE 
L1 (lin-35)(n745) L1 (lin-35) 
dauer entry daf-2 25dC 48hrs post-L1 dauer entry 
dauer daf-2 25dC 91hrs post-L1 dauer 
dauer exit daf-2 25dC 91hrs 15dC 12hrs post-L1 dauer exit 
Aged adult (spe-9) 23dC 8 days post-L4 molt aged adult 
Adult Harposporium spp control E. coli OP50 exposed 2 24hrs Hs ctrl 
Adult Harposporium spp exposed 2 24hrs Hs 
  
  
* Four samples were not included in ncRNA prediction and further analysis of ncRNAs because they were released 
after the ncRNA companion paper was submitted. 
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Table S4: Summary of cell and stage specific tiling array results  
 

Feature class FDR Samples # of features 
 WS1991 

% of features 
WS1992 

 

Annotated exons (unique) of coding genes 
overlapping with nrTARs3 

 

cells & 
stages 

119,521 exons 87.1% (137,193) 
  

cells 116,929 exons 
 

  

stages 100,658 exons 
 

Annotated coding genes with exons overlapping 
with nrTARs 

 

cells & 
stages 

18,183 genes 91.3% (19,912) 
  

cells 18,049 genes 
 

  

stages 15,400 genes 
 

Exons of integrated transcript models (unique) 
overlapping with nrTARs 

 

cells & 
stages 

138,433 exons 87.8% (157,612) 
  

cells 135,654 exons 
 

  

stages 116,799 exons 
 

Integrated transcript models with exons 
overlapping with nrTARs 

 

cells & 
stages 

19,325 genes 88.8% (21,774) 
  

cells 19,173 genes 
 

  

stages 16,152 genes 
 

Gene models detected4   5% cells & 
stages 

17,452 genes 87.7% (19,912) 
 

5% cells 17,075 genes 
 

 

5% stages 15,822 genes 
 

Gene models detected (FDR-corrected)5 0.14% cells & 
stages 

14,279 genes 71.7% (19,912) 
 

0.17% cells 13,149 genes 
 

 

0.71% stages 13,713 genes 
 

Gene models differentially expressed (at least 2 
fold)6 

5% cells & 
stages 

13,320 genes 66.9 % (19,912) 
 

5% cells 10,598 genes 
 

 

5% stages 9,552 genes 
 

Gene models differentially expressed (at least 2 
fold) (FDR-corrected)7 

0.11% cells & 
stages 

11,299 genes 56.7 % (19,912) 
 

0.20% cells 7,983 genes 
 

 

0.24% stages 8,606 genes 
 

 
 
1 Protein-coding gene models are as described in WS199. Overlapping features were merged to produce a total of 
19,912 gene models. 
2 Experimental results were calculated for 19,181 genes on the Affymetrix C. elegans  1.0R Tiling Array with > 3 
nonrepetitve exon probes. % of features is based on the total # of genes in WS199 (19,912) which is substantially 
similar to WS190 (20,121). 
3 non-redundant Transcriptionally Active Regions (nrTARs): Contiguous stretch of nucleotides all of which are 
inclusive to a TAR detected in > 1 of the samples. 
4 The False Discovery Rate (FDR) of 5% was calculated for each sample independently and the total number of 
genes tabulated from the union of these results. 
5 Correction for potential accumulation of false positives arising from multiple testing. The FDR of each sample 
(5%) was divided by the cumulative number of samples for each category considered: cells & stages = 37; cells = 
30; stages = 7. 
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6 The False Discovery Rate (FDR) of 5% was calculated for each independent comparison and the total number of 
genes tabulated from the union of these results. 
7 Correction for accumulation of false positives arising from multiple testing. The FDR of each sample (5%) was 
divided by the cumulative number of comparisons for each category considered: cells & stages = 46; cells = 25; 
stages = 21. (see supplemental methods for this table) 
 



 -66- 

Table S5: Different types of known ncRNAs  

Type  Number  
rRNA  19  
scRNA  1  
snRNA  94  
snlRNA  4  
snoRNA  139  
tRNA*  630  
miRNA  174  
Total  1061  
 The miRNAs are collected from miRBase 14, 
and other ncRNAs are collected from 
WormBase 200.  
*24 tRNAs are from Mitochondria.  
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Table S6: Annotated regions used for the training of machine learning methods (21K-
set) – tiling array TARs 

   Transcribed regions overlapped with confirmed annotations  

(Training Set)  
   CDS  

97.4%a  

UTR  

86.7%a  

known ncRNAd  

58.9%a  

Total number of bases  
5,117,511  

(9,714,480)b  

2,682,448  

(7,498,856)b  

51,928  

(181,034)b  
Total number of 
windows  

51,721  

(14,230) b  

27,084  

(9,854) b  

489  

(225) b  
Number of windows with 
known 2” structurec  

318  

(183) b  

320  

(201) b  

305  

(160) b  
a Fraction of annotated elements overlapped with tiling array TARs  

b Values in the parenthesis are counted for the TARs, from which the fragmented windows are derived.  

c Predicted with RNA secondary structure models from Rfam  

d This is just the gold standard set and doesn't include any unconfirmed ones. Only 10% of known 
ncRNA were sampled because of large number of annotated tRNAs in the gold standard set.  
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Table S7: Performance of our integrated method (21K-set) on tiling array TARsa with 
three different ways to define element classes in the gold-standard set  

Class definition 1  Class definition 2  Class definition 3  
 Element class  AUC  Element class  AUC  Element class  AUC  
ncRNA  0.9718  ncRNA  0.9246  ncRNA  0.9418  
Coding exon  0.9718  Coding exon  0.7485  Coding exon  0.7361  
      3’ UTR  0.7448  5’ and 3’ UTR  0.7315  
aThe minimum length of a TAR is 100nt. Large TARs are binned into 
100nt windows with a step size of 75nt.  
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Table S8: Annotated and novel tiling array TARs going into 21K-set of ncRNAs  

   Transcribed regions overlapped with  

annotated exons or known ncRNA  

(Confirmed and predicted)  

Novel transcribed regions  

   Exon  

(81.3%) a  

known ncRNA  

(13.1%) a  
CDS-like b  UTR-like b  ncRNA-like b  

Total number of bases  
32,744,074  

(33,532,732) c  

265,250  

(640,719) c  

45,208  

(134,041) c  

368,771  

(1,048,017) c  

4,352,048  

(6,503,326) c  
Total number of 
windows  

396,551  

(77,131) c  

2,547  

(1,331) c  

441  

(194) c  

3,294  

(1,983) c  

45,913  

(21,521) c  
Number of windows  

with known secondary 
structure) d  

7,314  

(3,988) c  

961  

(519) c  

26  

(19) c  

152  

(113) c  

3,537  

(2,083) c  
a Fraction of annotated elements overlapped with tiling array TARs.  

b In the prediction, if the probability of being ncRNA is larger than 0.009 but less than 0.297, it is ncRNA-
like; if the probability of being a UTR is larger than 0.297 or less than 0.692, it is UTR-like; otherwise, if the 
probability of being CDS is larger than 0.692, it is CDS-like. The cut-offs are determined from the ROC 
curves.  

c The long TARs are fragmented into small windows, and values in the parenthesis are counted for the 
original TARs.  

d Secondary structure is predicted from Rfam/INFERNAL.  
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Table S9: Co-expression clusters of coding transcripts and novel ncRNA candidates 
(7K-set) 

Cluster Coding 
Transcripts 

Candidate 
ncRNA 
bins* 

Total 
Candidate 
ncRNA 
bins % 

Coding 
Transcripts GO 
enrichment** 

Coding 
Transcripts GO 
depletion** 

0 1199 1193 2392 49.87% 

Transmembrane 
proteins, 
Receptors, Signal 
transducer activity 

Protein binding, 
Development, 
Growth regulation 

1 2727 4003 6730 59.48% 

Chromatin 
assembly, DNA 
binding, 
Organelle 
organization 

Protein binding 

2 4210 604 4814 12.55% 

Ion channel, 
Receptor, 
Membrane, Signal 
transducer 
activity, 
Transcription 

Protein binding, 
Laval development, 
Growth regulation, 
Organelle, Cell 
cycle 

3 4377 424 4801 8.83% 

Development, 
Growth 
regulation, 
Reproduction 

Receptor, Signal 
transducer activity 

4 4274 356 4630 7.69% 

Development, 
Cell cycle, 
Growth 
regulation, 
Reproduction 

Receptor, 
Membrane, Signal 
transducer activity, 
Transcription factor 
activity 

5 2931 362 3293 10.99% 
Lipid metabolism, 
Sugar binding, 
Anion transport 

Development, 
Receptor, Signal 
transducer activity, 
Growth regulation 

6 577 1805 2382 75.78% No significant 
enrichment 

No significant 
depletion 

7 2185 115 2300 5.00% 
Membrane, Signal 
transducer 
activity, Receptor 

Development, 
Growth regulation, 
Organelle 

8 1548 149 1697 8.78% Metabolism, 
Kinase 

Development, 
Signal transducer 
activity, Receptor, 
Expression 
regulation 

9 276 1276 1552 82.22% No significant 
enrichment 

No significant 
depletion 

10 1182 75 1257 5.97% 

Receptor, 
Membrane, Signal 
transducer 
activity, Ion 

Development, 
Growth regulation, 
Reproduction 
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channel 

11 677 527 1204 43.77% 
Transcription 
factor activity, Ion 
binding, 

No significant 
depletion 

12 660 42 702 5.98% 

Chromatin 
assembly, DNA 
binding, 
Organelle 
organization 

Membrane 

13 499 63 562 11.21% Organelle No significant 
depletion 

Total 27322 10994* 38316    
The total RNA tiling array data at different tissues and stages were used to calculate the expression 
level of coding transcripts and candidate ncRNA bins. 
*The candidate ncRNA bins are merged into 7k-set novel ncRNA candidates. 
** The cut-off of enrichment or depletion is p value <0.01. 
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Table S10: Total mapped reads, numbers of peaks bound by each of 23 factors (22 
TFs and one dosage compensation factor, 28 experiments in total) from ChIP-seq. 

   # of Binding Sites # of Total Mapped Reads 
   Narrow Peaks1 GFP  Input  
ALR-1  L2  2383  3,746,542   2,506,542  
BLMP-1  L1  6833  13,699,035   7,832,710  
CEH-14  L2  1467  4,369,374   1,124,270  
CEH-30  LE  1605  6,915,024   6,288,570  
EGL-27  L1  135  3,402,816   2,862,812  
EGL-5  L3  975  2,970,537   1,861,526  
ELT-3  L1  1970  5,558,439   6,612,443  
EOR-1  L3  3197  2,386,942   3,327,484  
GEI1-1  L4  4356  2,744,559   4,498,845  
HLH-1  MxE  512  4,052,296   2,488,302  
LIN1-1  L2  1352  2,942,539   4,563,448  
LIN1-3  MxE  680  5,108,200   9,056,899  
LIN-15B  L3  1726  2,024,367   6,045,335  
LIN-39  L3  2954  3,399,898   1,993,494  
MAB-5  L3  3763  3,517,148   3,568,848  
MDL-1  L1  1691  4,134,371   4,264,998  
MEP-1  MxE  5333  4,239,180   5,082,534  
PES-1  L4  3088  3,417,784   2,630,081  
PHA-4  MxE  3786  7,719,682   9,994,939  
PHA-4  L1  4648  15,222,883   11,556,011  
PHA-4  L2  6203  4,593,131   2,284,558  
PHA-4  LE  4569  4,574,629   6,295,331  
PHA-4  StvL1  5792  17,845,198   26,819,222  
PHA-4  YA  3568  5,123,545   10,555,219  
PQM-1  L3  954  2,626,971   6,505,184  
SKN-1  L1  3279  4,517,511   2,474,805  
UNC-130  L1  3401  3,174,776   5,312,775  
DPY-27  MxE2  135 2,074,238 7,578,449 
1Narrow binding peaks defined by PeakRanger. 
2Dosage compensation factor. 
MxE: mixed embryo; LE: late embryo; StvL1: starved L1 YA: young adult  
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Table S11: GO analysis of genes associated with HOT regions  

 
GO ID Name P-value Sample 

frequency 
Backgrou

nd 
frequency 

Genes 

0040007 growth 1.49E-19 82/153 (53.6%) 2845/15340 
(18.5%) 

rps-22, rps-12, Y87G2A.1, hsp-1, 
rps-25, lin-54, rps-28, F36A2.7, 

rps-24, pfd-1, dpy-23, Y82E9BR.3, 
glit-1, vps-32.1, xbx-5, sys-1, rpl-5, 

wrt-5, rpl-43, R11D1.9, 
Y65B4BR.5, K12H4.5, Y49A3A.1, 
Y71H2AM.5, rps-1, K10D2.5, puf-
9, taf-4, rpl-3, hsr-9, eif-3.B, epc-1, 

F17C11.9, W04A4.5, mei-2, 
K04G7.1, rps-30, ash-2, wip-1, 

H28O16.1, Y48A6B.3, ZK550.3, 
cco-2, rpl-13, his-37, mbk-1, set-16, 

vha-8, kbp-4, cap-2, nipi-3, 
C34C12.2, F48C1.4, pbs-2, sor-1, 

dpm-3, T23F11.1, eft-4, rpl-6, rpl-7, 
ekl-4, rpl-32, rpl-22, E02D9.1, emo-

1, atad-3, nuo-1, LLC1.3, cct-1, 
Y51H4A.15, cco-1, rpn-3, rps-26, 

rpl-24.1, rpl-14, prp-8, mdt-19, rpl-
35, rfc-4, mdt-26, htz-1, eft-2 

0009792 

embryo 
development 

ending in birth 
or egg 

hatching 

1.67E-17 82/153 (53.6%) 3054/15340 
(19.9%) 

rps-22, rps-12, cbp-1, atx-2, hsp-1, 
rps-25, lin-54, F36A2.7, F40F11.2, 

pfd-1, dpy-23, Y82E9BR.3, vps-
32.1, sys-1, rpl-5, rpl-43, R11D1.9, 
Y65B4BR.5, K12H4.5, Y49A3A.1, 
T08B2.11, Y71H2AM.5, rps-1, taf-
4, rpl-3, eif-3.B, epc-1, F17C11.9, 
W04A4.5, mei-2, K04G7.1, ile-2, 

daf-21, wwp-1, ash-2, wip-1, 
H28O16.1, hsp-60, ZK550.3, klc-1, 
mdl-1, vig-1, cco-2, rpl-13, his-37, 
pqn-51, set-16, cls-2, tre-1, vha-8, 
kbp-4, cap-2, F25E2.2, cpt-2, nipi-
3, F48C1.4, let-268, pbs-2, eft-4, 
rpl-6, rpl-7, ekl-4, rpl-22, dnj-11, 

emo-1, atad-3, nuo-1, LLC1.3, cct-
1, Y51H4A.15, cco-1, rpn-3, rps-

26, rpl-24.1, rpl-14, prp-8, mdt-19, 
rpl-35, rfc-4, mdt-26, htz-1, eft-2 

0005737 cytoplasm 7.43E-15 47/153 (30.7%) 1130/15340 
(7.4%) 

rps-22, rps-12, cbp-1, atx-2, hsp-1, 
egl-30, trap-3, rps-28, rps-24, ddp-
1, pfd-1, dpy-23, sys-1, rpl-5, rpl-
43, R11D1.9, Y71H2AM.5, rps-1, 
puf-9, rpl-3, ain-1, F17C11.9, rps-
30, daf-21, wwp-1, hsp-60, eat-16, 
deb-1, rpl-13, cls-2, vha-8, tra-4, 

cap-2, unc-108, let-268, eft-4, rpl-6, 
rpl-7, rpl-32, rpl-22, nuo-1, 

LLC1.3, cco-1, rps-26, rpl-24.1, 
rpl-14, rpl-35 

0005840 ribosome 1.65E-13 19/153 (12.4%) 141/15340 
(0.9%) 

rps-22, rps-12, rps-28, rps-24, rpl-
5, rpl-43, R11D1.9, rps-1, rpl-3, 

rps-30, rpl-13, rpl-6, rpl-7, rpl-32, 
rpl-22, rps-26, rpl-24.1, rpl-14, rpl-

35 
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 Table S12: Expression correlation of transcription factors with target genes and non-
target genes. 

TF Target non-Target Z-score P-value 
ALR-1 -0.007457 -0.008889 0.129717 0.896799 
BLMP-1 -0.066699 -0.041505 -2.489284 0.012836 
CEH-14 -0.096922 0.006595 -11.395537 0 
EGL-27 0.128903 -0.034187 12.274861 0 
EGL-5 0.0441 0.007088 5.185788 0 
ELT-3 0.014695 -0.019066 3.251677 0.001165 
EOR-1 0.133573 -0.042516 21.571089 0 
GEI-11 0.068925 -0.005121 2.314903 0.021352 
LIN-11 -0.081399 -0.048996 -2.416469 0.015807 
LIN-15B 0.132488 -0.047239 21.460631 0 
LIN-39 0.072205 -0.013786 11.372508 0 
MAB-5 0.026751 0.009732 1.416596 0.156752 
MDL-1 -0.0611 0.037063 -17.003577 0 
PES-1 0.195083 -0.037515 20.789856 0 
PHA-4 0.016003 -0.052655 16.739494 0 
PQM-1 0.312876 0.016214 32.681676 0 
SKN-1 0.090011 -0.017028 29.322469 0 
UNC-130 -0.080614 -0.028788 -1.698375 0.090283 
For each TF, the Pearson correlation coefficients of the expression level of the TF with those of its target 
genes and non-target genes were calculated across the 7 developmental stage time course. The 
significance of difference between target and non-target genes was calculated using t-test.   
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Table S13: Overview of PicTar-predicted miRNA target sites within 3'UTRs of the 
aggregated integrated transcript set (see text for details).  

 3 species conservation  5 species conservation  
Number of miRNAs analyzed  183  183  
Number of 3'UTRs analyzed  25,539  25,539  
Number of genes analyzed  14,519  14,519  
Number of target sites detected  20,427  8,810  
Number of 3'UTRs with target sites  4,866  2,406  
Number of genes with target sites  2,349  1,162  
Number of miRNAs that target a 
3'UTR  182  178  
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Table S14: Overlap of 4.1 Mb of residual constrained blocks with various genomic 
elements. 
 
 

Genomic 
elements 

observed base 
pair overlap 

expected by 
GSC 
simulation 

Ratio obs/exp p-value 

Introns 0.47 0.35 1.3 1e-34 

Intra-genic 
regions 0.27 0.18 1.5 1e-34 

1000 bp 
upstream of 
gene TSS 

0.19 0.18 1.06 2.7e-7 

1000 bp 
downstream 
genic regions 

0.18 0.23 0.78 1e-34 
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Table S15: This table shows a comparison of the amount of binding for a few selected 
transcription factors between C.elegans as compared to those from the ENCODE pilot 
project for human. 
 
Pilot 
ENCODE 
Human TF 
Binding 

Total Binding 
(bp) 

Percentage of 
Pilot Regions 
(29.96Mb) 
Bound 

Intergenic 
Binding (bp) 

Percentage of 
Intergenic Pilot 
Regions 
(13.15Mb) 
Bound 

STAT1 200,136 0.67% 175,890 1.34% 
cFos 256,342 0.86% 203,557 1.55% 
cJun 257,928 0.86% 211,855 1.61% 
CTCF (32h) 281,292 0.94% 267,107 2.03% 
CEBP!  (32h) 346,901 1.16% 323,879 2.46% 
Average 268,520 0.90% 236,458 1.80% 
modENCODE 
C.elegans TF 
Binding 

Total Binding 
(bp) 

Percentage of 
Genome  
Bound 

Intergenic 
Binding (bp) 

Percentage of 
Intergenic 
Regions 
(40.89Mb) 
Bound 

CEH-14 (L2) 290,252 0.29% 225,713 0.55% 
EGL-27 (L1) 193,359 0.19% 180,394 0.44% 
MAB-5 (L3) 337,306 0.34% 311,347 0.76% 
PES-1 (L4) 752,681 0.75% 694,621 1.70% 
PHA-4 (EMB) 921,663 0.92% 851,259 2.08% 
Average 499,052 0.50% 452,667 1.11% 
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Table S16: This table shows a comparison between the amount of transcription 
between the modENCODE project for C.elegans and human from the pilot ENCODE 
project. The amount of transcription is broken down by the genic and intergenic 
components using GENCODE and WormBase WS190 annotation. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pilot ENCODE 
Human 
Transcription 

Pilot Regions 
Transcribed 
(bp) 

Genic 
Regions 
Transcribed 
(bp) 

Percentage 
Genic 
Transcription 

Intergenic 
Regions 
Transcribed 
(bp) 

Percentage 
Intergenic 
Transcription 

Placenta PolyA 484,629 407,959 84.2% 76,670 15.8% 
HeLa PolyA 905,973 507,108 56.0% 398,865 44.0% 
modENCODE 
C.elegans 
Transcription 

Genome 
transcribed 
(bp) 

Genic 
Regions 
Transcribed 
(bp) 

Percentage 
Genic 
Transcription 

Intergenic 
Regions 
Transcribed 
(bp) 

Percentage 
Intergenic 
Transcription 

L2 PolyA 20,421,924 17,244,358 84.2% 3,177,566 15.6% 
  



 -79- 

Table S17: Table of Wormbase versions used (Note here "T" denotes table so, "T7" means 
"supplementary table S7".) 
 
Figure Figure Title Wormbase 

Version 
#Wormbase 
Live genes 

#Wormbase 
CDS (inc alt 
splice forms) 

1 Transcriptome Features and 
Alternative Splicing 

200, 170 39868, 23977 23973, 23224 

2 Expression and Binding Dynamics 180 29500 23511 
3 HOT Regions 190 29802 23771 
4 Integrated Regulatory Network 170 23977 23224 
5 Chromosome-scale domains of 

chromatin organization 
170 23977 23224 

6 Chromatin Patterns around Genes 170 23977 23224 
7 Statistical Models Predicting 

Regulation and Expression from 
Chromatin Features 

190 29802 23771 

8 Relative proportion of annotations 
among constrained sequences 

190 29802 23771 

S1 ChIP-chip and ChIP-seq 
comparision 

190 29802 23771 

S2 Correlation of RNA expression 
levels for Young Adult between 
RNA-seq and tiling array platforms 

190 29802 23771 

S3 Numbers of RNA-seq Reads 170 23977 23224 
S4 RNA sequencing depth analysis 170 23977 23224 
S5 Transcript building 170 23977 23224 
S6 A complex isoform example 170 23977 23224 
S7 Features defined by RNAseq as 

compared to WormBase as of 
January, 2007 (WS170) 

170 23977 23224 

S8 Number of confirmed splice 
junction over time 

170 23977 23224 

S9 Proportion of splice junctions 
confirmed by various methods 

170 23977 23224 

S10 Saturation of discovery of 
additional ncRNAs and coding 
exons with additional RNA-seq data 
sets 

190 29802 23771 

S11 Number of stages and samples 
where a given gene or splice 
junction is observed 

170 23977 23224 

S12 Developmental stage-specific 
expression 

190 29802 23771 

S13 Lab batch effects 180 29500 23511 
S14 Cumulative plot of isoform 190 29802 23771 



 -80- 

composition distribution 
S15 SOM clusters of transcripts with 

different developmental expression 
profiles 

190 29802 23771 

S16 Number of genes and transcripts 
shared between pairs of SOM 
clusters 

190 29802 23771 

S17 Classes of distinguishing features 
between isoforms with different 
developmental expression profiles 
based on SOM clustering 

190 29802 23771 

S18 Examples of read count 
distributions supporting differential 
expression of alternative transcript 
isoforms among developmental 
stages 

180 29500 23511 

S19 A breakdown on how the updated 
list of C. elegans pseudogenes was 
created 

200 39868 23973 

S20 Binning of long TARs built from 
tiling arrays 

n/a n/a n/a 

S21 Predicting ncRNAs 200, 170 39868, 23977 23973, 23224 
S22 TF binding around non-coding 

RNAs 
200, 170 39868, 23977 23973, 23224 

S23 Co-occurrence of transcription 
factors 

190 29802 23771 

S24 Comparison of PeakSeq and 
PeakRanger peak calls 

n/a n/a n/a 

S25 Distribution of TF binding 190 29802 23771 
S26 Control experiments for HOT 

regions 
190 29802 23771 

S27 HOT regions enrichments 190 29802 23771 
S28 Higher gene expression level in 

HOT regions 
190 29802 23771 

S29 HOT regions are broadly expressed 190 29802 23771 
S30 Pair-wise correlations of PHA-4 

binding signal across different 
stages 

190 29802 23771 

S31 Examples of Pol II binding and 
expression 

190 29802 23771 

S32 Histone marks distribution over 
repetitive elements 

190 29802 23771 

S33 Promoters of chromosome X genes 
have higher GC content compared 
to autosomes 

190 29802 23771 

S34 Histone marks aggregation around 170 23977 23224 
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TSS and TTS 
S35 TF sequence motif discovery 190 29802 23771 
S36 TFs in the larval network 170 23977 23224 
S37 Network motifs 170 23977 23224 
S38 TF binding and chromatin features 182 29505 23523 
S39 Machine learning procedure for 

modeling transcription factor 
binding peaks 

n/a n/a n/a 

S40 TF binding model accuracy 182 29505 23523 
S41 Average signals of some chromatin 

marks at the binding-peaks and non-
binding-peaks of TFs 

182 29505 23523 

S42 Developmental stage-specific 
models 

182 29505 23523 

S43 Combination of chromatin and 
sequence features 

182 29505 23523 

S44 Coverage of evolutionarily 
constrained regions by genomic 
features 

190 29802 23771 

S45 Conservation enrichment analysis 190 29802 23771 
S46 PhastCons score correlation with 

peak centers in modENCODE peak 
calls 

190 29802 23771 

S47 Saturation of TF binding 190 29802 23771 
S48 Comparison of coverage between 

ENCODE pilot and modENCODE 
C. elegans project 

190 29802 23771 

S49 RNAPII ChIP-seq signal 
aggregation in human and  
C. elegans 

190 29802 23771 

S50 Comparison of histone marks in 
C. elegans early embryos and 
human CD4T cells 

190 29802 23771 

T1a Data overview for RNA sequencing 
and expression tiling arrays 

190 29802 23771 

T1b ChIP-chip, ChIP-seq, and other 
chromatin-characterization 
experiments 

190 29802 23771 

T1c Inferred genomic elements 170 23977 23224 
T2a Sources of polyA sites in final 

integrated transcript set 
170 23977 23224 

T2b C. elegans genes not identified as 
transcribed in 19 polyA RNA-seq 
samples 

170 23977 23224 

T3 Develpmental stages and tissue 
samples of small RNA-seq and 

190 29802 23771 
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tiling array experiments 
T4 Summary of cell and stage specific 

tiling array results 
199 39873 23973 

T5 Different types of known ncRNAs 200 na na 
T6 Annotated regions used for the 

training of machine learning 
methods (21K-set) - tiling array 
TARs 

170 23977 23224 

T7 Performance of our integrated 
method (21K-set) on tiling array 
TARsa with three different ways to 
define element classes in the gold-
standard set  

170 23977 23224 

T8 Annotated and novel tiling array 
TARs going into 21K-set of 
ncRNAs  

170 23977 23224 

T9 Co-expression clusters of coding 
transcripts and novel ncRNA 
candidates (7K-set) 

170 23977 23224 

T10 Total mapped reads, numbers of 
peaks bound by each of 23 factors 
(22 TFs and one dosage 
compensation factor, 28 
experiments in total) from ChIP-seq 

170 23977 23224 

T11 GO analysis of genes associated 
with HOT regions 

190 29802 23771 

T12 Expression correlation of 
transcription factors with target 
genes and non-target genes 

170 23977 23224 

T13 Overview of PicTar-predicted 
miRNA target sites within 3'UTRs 
of the aggregated integrated 
transcript set (see text for details). 

190 29802 23771 

T14 Overlap of 4.1 Mb of residual 
constrained blocks with various 
genomic elements 

190 29802 23771 

T15 Sample comparison of C. elegans 
and human TF binding regions 

190 29802 23771 

T16 Sample comparison of C. elegans 
and human transcription  

190 29802 23771 
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